Appendix Contents

Appendix A: Utilities
Appendix B: Parcel Ownership and Easements
Appendix C: Preliminary Geotechnical Report
Appendix D: Design Guidelines and Requirements
Appendix E: Community Meeting Minutes
Appendix F: Crime Statistics
Appendix G: Pedestrian & Bicycle Usage Statistics
Appendix H: Draft PEAR
Appendix I: Sample Cooperative Agreement
Appendix J: Alternatives Cost Analysis
A. Utilities
UTILITY POLES ARE APPROXIMATELY 45’ TALL
## B. Parcel Ownership and Easements

<table>
<thead>
<tr>
<th>#</th>
<th>Street Address</th>
<th>Owner</th>
<th>Acreage</th>
<th>Current Document Date</th>
<th>APN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1850 Armory Drive</td>
<td>SRJC</td>
<td>0</td>
<td>03/19/1975</td>
<td>180-480-012</td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
<td>SRJC</td>
<td>15.24</td>
<td>03/11/1998</td>
<td>180-480-013</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>SRJC</td>
<td>0</td>
<td>03/31/1978</td>
<td>180-480-014</td>
</tr>
<tr>
<td>4</td>
<td>1500 Armory Drive</td>
<td>State of California</td>
<td>2.93</td>
<td>01/01/1975</td>
<td>180-480-015</td>
</tr>
<tr>
<td>5</td>
<td>1377 Cleveland Ave</td>
<td>Minnis Gary L Tr</td>
<td>1.03</td>
<td>12/10/2003</td>
<td>012-081-017</td>
</tr>
<tr>
<td>6</td>
<td>37 Frances St</td>
<td>Parker Family Partnership</td>
<td>0</td>
<td>01/12/2000</td>
<td>012-081-004</td>
</tr>
<tr>
<td>7</td>
<td>18 Frances St</td>
<td>BTX Corporation</td>
<td>0</td>
<td>03/29/1996</td>
<td>012-081-005</td>
</tr>
<tr>
<td>8</td>
<td>21 Frances St</td>
<td>Pegg, Ernest L &amp;</td>
<td>0</td>
<td>08/23/1996</td>
<td>012-081-020</td>
</tr>
<tr>
<td>9</td>
<td>1020 Jennings Ave</td>
<td>Harriet A Tr</td>
<td>19</td>
<td>06/04/2009</td>
<td>041-161-021</td>
</tr>
<tr>
<td>10</td>
<td>1060 Jennings Ave</td>
<td>Finali, Mary Christina Tr</td>
<td>.34</td>
<td>06/04/2009</td>
<td>041-161-004</td>
</tr>
<tr>
<td>11</td>
<td>810 Jennings Ave</td>
<td>UHC Santa Rosa LP</td>
<td>2.1</td>
<td>04/27/2005</td>
<td>041-161-029</td>
</tr>
<tr>
<td>12</td>
<td>1621 Cleveland Ave</td>
<td>Finali, Family Partnership II LP</td>
<td>0.940</td>
<td>11/06/2002</td>
<td>041-161-013</td>
</tr>
<tr>
<td>13</td>
<td>1615 Cleveland Ave</td>
<td>Tylawsky, Gregory</td>
<td>0</td>
<td>12/14/2000</td>
<td>012-084-008</td>
</tr>
<tr>
<td>14</td>
<td>35 Foley St</td>
<td>Davis, Barbara E</td>
<td>0</td>
<td>05/06/2008</td>
<td>012-084-002</td>
</tr>
<tr>
<td>15</td>
<td>41 Foley St</td>
<td>Davis, Barbara E</td>
<td>0</td>
<td>05/06/2008</td>
<td>012-084-006</td>
</tr>
<tr>
<td>16</td>
<td>45 Foley St</td>
<td>Davis, Barbara E</td>
<td>0</td>
<td>05/06/2008</td>
<td>012-084-005</td>
</tr>
<tr>
<td>17</td>
<td>51 Foley St</td>
<td>Fischer, Robert R Tr</td>
<td>0</td>
<td>01/25/1999</td>
<td>012-084-004</td>
</tr>
<tr>
<td>18</td>
<td>125 Foley St</td>
<td>Victoria 2004 LLC</td>
<td>0.26</td>
<td>10/28/2004</td>
<td>012-084-010</td>
</tr>
<tr>
<td>19</td>
<td>Unknown Foley St</td>
<td>Buckner, Properties</td>
<td>1.37</td>
<td>03/02/2005</td>
<td>012-084-011</td>
</tr>
<tr>
<td>20</td>
<td>134 Foley St</td>
<td>Liebau, Jack Tr</td>
<td>0</td>
<td>05/19/2004</td>
<td>012-081-008</td>
</tr>
<tr>
<td>21</td>
<td>100 Foley St</td>
<td>Norris, Timothy L &amp;</td>
<td>0</td>
<td>10/09/1998</td>
<td>012-081-009</td>
</tr>
<tr>
<td>22</td>
<td>30 Foley St</td>
<td>Linda S</td>
<td>0.7</td>
<td>11/03/2004</td>
<td>012-081-011</td>
</tr>
<tr>
<td>23</td>
<td>1599 Cleveland Ave</td>
<td>Partners</td>
<td>0</td>
<td>12/30/1998</td>
<td>012-081-023</td>
</tr>
</tbody>
</table>
C. Preliminary Geotechnical Report

The following letter report presents the results from the preliminary geologic/geotechnical feasibility study, prepared by Kleinfelder Geotechnical Engineering, for the proposed Highway 101 Pedestrian Overcrossing to be located in Santa Rosa, California.
TECHNICAL MEMORANDUM

Date: May 27, 2009

To: Mr. Steven Grover
Steven Grover & Associates
800 Heinz Avenue, Studio 11
Berkeley, CA 94710

From: Jeff Richmond, C.E.G.
Terence Craven, G.E.

Kleinfelder Project: 104028

Subject: Preliminary Geologic/Geotechnical Feasibility Study
Highway 101 Pedestrian Overcrossing
Santa Rosa, California

This memorandum presents the results of Kleinfelder's preliminary geologic/geotechnical feasibility study for the proposed Highway 101 Pedestrian Overcrossing to be located in Santa Rosa, California. The objective of this memorandum is to provide Steven Grover & Associates with findings and conclusions regarding the current geologic conditions of the study area, and discuss anticipated foundation elements the proposed structure may require given these conditions. Our assessment included review of published geologic literature and maps, review of pertinent geotechnical investigation reports performed in the vicinity by private consultants, and preparation of this memorandum.

This study did not include subsurface exploration, laboratory testing, or any geotechnical analysis of the site conditions, and is intended only to provide a preliminary assessment of the geologic and geotechnical conditions that can be discernible from existing data sources.

LOCATION AND STUDY AREA DESCRIPTION

The study area is located along the Highway 101 corridor between Post Mile 21.2 through 21.46. The highway consists of eight (8) lanes; (4) northbound and (4) southbound along this section, and maintains a total approximate right of way width of approximately 135 feet. The irregularly shaped study area is a maximum of approximately 800 feet wide, which incorporates the highway and extends up to 350 feet east and west of the right of way. To the east, the study area includes Armory Drive (east frontage road to Highway 101) which provides
access to Scholar Drive, Santa Rosa Junior College Parking areas, the Campus Police Station, and other campus structures also located within the study area. West of the freeway, Cleveland Avenue (west frontage road to Highway 101) provides access to Foley Street, Jennings Avenue, and frontage business locations within the study area.

Topography within the study area is essentially flat but has been graded to maintain positive flow to infrastructure drainage facilities.

GEOLLOGIC SETTING

Regional and Site Geology

The site is located on the Santa Rosa plain in central Sonoma County within the Coast Range Geomorphic Province of Northern California. This province is generally characterized by northwest-trending mountain ranges and intervening valleys, which are a reflection of the dominant northwest structural trend of the bedrock in the region. The basement rock in the northern portion of this province consists of the Great Valley Sequence, a Jurassic volcanic ophiolite sequence with associated Cretaceous to Jurassic sedimentary rocks, and the Franciscan Complex, a subduction complex of diverse groups of igneous, sedimentary, and metamorphic rocks of Upper Jurassic to Cretaceous age (140 to 65 million years old). The Great Valley Sequence was tectonically juxtaposed with The Franciscan Complex most likely during subduction accretion of the Franciscan, and these ancient fault boundaries are truncated by a modern right-lateral fault system that includes the San Andreas, Healdsburg-Rodgers Creek, and Maacama Faults. The San Andreas Fault defines the westernmost boundary of the local bedrock, approximately 19 miles southwest of the site. In the site vicinity, the Great Valley Sequence and Franciscan Complex are unconformably overlain by Tertiary age continental and marine sedimentary and volcanic rocks. These Tertiary age rocks are locally overlain by younger Quaternary alluvial deposits.

The site geology has been mapped by McLaughlin et al. (2008, United States Geological Survey, Open File Report 2008-1009, Geologic and Geophysical Framework of the Santa Rosa 7.5' Quadrangle, Sonoma County, California); Jennings (1988, California Geological Survey, Open File Report 88-5, Preliminary Geologic Map of the Northwest Quarter of the Santa Rosa 7.5-Minute Quadrangle, Sonoma County, California); and Huffman and Armstrong (1980, California Division of Mines and Geology, Special Report 120, Geology for Planning in Sonoma County). McLaughlin et al. (2008) indicate the site is underlain by undivided Holocene (<11,000 years old) alluvial fan and fluviatile terrace deposits consisting of gravel, sand, and silt. Jennings (1988) shows the site to be underlain by stream and valley alluvium. Huffman and Armstrong (1980) mapped the site as being underlain by Quaternary age older alluvial fan deposits composed of deeply weathered, poorly sorted coarse sand and gravel, up to 100 feet in thickness.
The publications identify no landslides or slope instability features within the study area. Huffman and Armstrong have located the site within Slope Stability Zone A, considered an area of greatest relative stability due to low slope inclination (dominantly less than 15%).

Faulting and Seismicity

The site is located within the seismically active North Bay/North Coast region of California and is subject to seismically induced ground shaking from nearby and distant faults. Several faults have been mapped in the general site vicinity. The San Andreas fault zone, located southwest of the site, is the boundary between two tectonic plates, the Pacific Plate (west of the fault) and the North American Plate (east of the fault). At this boundary, the Pacific Plate is moving north relative to the North American Plate. In the North Coast region of California, this movement is distributed across a complex system of predominantly strike-slip, right-lateral, parallel, and sub-parallel faults that include the San Andreas, Healdsburg-Rodgers Creek, and Maacama among others.

The site is not located within an Earthquake Fault Zone as defined by the California Geological Survey (CGS) in accordance with the Alquist-Priolo Earthquake Fault Zone Act of 1972. The nearest known active fault is the Healdsburg-Rodgers Creek fault, located approximately 5,600 feet northeast of the site, which is capable of producing a maximum earthquake magnitude event of 7.0. Moderate to major earthquakes generated on the Healdsburg-Rodgers Creek fault can be expected to cause strong ground shaking at the site. Strong ground shaking can also be expected from moderate to major earthquakes generated on other faults in the region such as the Maacama fault (located 9 miles north of the site) and the San Andreas fault (located 19 miles southwest of the site).

McLaughlin (2008), Jennings (1988), and Huffman and Armstrong (1982) have mapped fault traces associated with the Healdsburg-Rodgers Creek fault in closer proximity to the site. The closest of these is located approximately 4500 feet northeast of the site. The publications do not indicate the estimated activity level of the fault traces, nor have the traces been zoned as active by the CGS.

A number of large earthquakes have occurred within this region in the historic past. Some of the significant nearby events include two 1969 Santa Rosa earthquakes (M5.6, 5.7), the 2000 Yountville earthquake (M5.2), and the 1906 San Francisco earthquake (M8+). Future seismic events in this region can be expected to produce strong seismic ground shaking at this site. The intensity of future shaking will depend on the distance from the site to the earthquake focus, magnitude of the earthquake, and the response of the underlying soil and bedrock.

Flooding

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Index (Map Number 06097CIND0A) for Sonoma County, the site is located on Panel
This panel was not printed, as no special flood hazard areas were identified within its coverage area.

PREVIOUS STUDIES

Geotechnical investigation reports prepared by Kleinfelder and other private consultants, pertinent to the site and site vicinity were reviewed as part of this study. The following section identifies the selected reports reviewed and provides a brief summary of the findings and recommendations presented by the consultants.

Harding-Lawson Associates. 1980. Report: Geotechnical Investigation: New Gymnasium, Santa Rosa Junior College, Santa Rosa, California, HLA Job No. 1074.043.02

Harding-Lawson Associates performed a geotechnical investigation for a proposed gymnasium on the Santa Rosa Junior College Campus. The gymnasium is located approximately 1,000 feet east of the project study area for the overcrossing. The investigation included drilling of four (4) borings with hollow stem auger to depths ranging between 23.5 and 50 feet below the ground surface (bgs). The report indicates the presence of weak surficial fill underlain by stiff to very stiff sandy clay subsoil with low expansion potential and moderate compressibility. The surface soil layers were underlain by discontinuous, heterogeneous alluvium of high strength and low compressibility under the anticipated building loads. Groundwater was encountered at approximately 10 feet bgs. The report recommended removal of all fill soils within and adjacent to the proposed structure and exterior concrete slabs. The report suggested building support could be achieved with standard spread footings a minimum of 12 inches in width. The geologic hazards review indicated low potential for liquefaction due to the high density of the underlying soils, and little to no hazard of fault surface rupture.

Herzog Geotechnical Consulting Engineers. 1997-1998, Geotechnical Investigation & Geologic Hazards Evaluation, Health Sciences Facility, Santa Rosa Junior College, Santa Rosa, California, Project No. 289-01-96

Herzog Geotechnical Consulting Engineers performed a geotechnical investigation and geologic hazards evaluation for the proposed Santa Rosa Junior College Health Sciences Facility, located approximately 1200 feet northeast of the study area. The investigation included drilling four borings with mud rotary and hollow stem auger in 1997, and two subsequent borings with mud rotary in 1998 to a maximum depth of 51 feet bgs. Their report indicates the site is underlain by 1 to 1.5 feet of non-plastic to highly plastic fill underlain by alluvial deposits comprised of medium dense to very dense gravelly and clayey sand, and medium stiff to stiff sandy clay. Groundwater encountered ranged between 5 and 11 feet bgs. The report concluded foundation support could be achieved through construction of a select fill pad extending 3 feet below subgrade and 7 feet beyond the perimeter of the building. The investigation identified two discontinuous layers which could undergo liquefaction during an
earthquake event, producing differential settlements of up to 0.75 inches at the surface. After performing the subsequent borings and additional analysis in 1998, the maximum settlement due to liquefaction was reduced to 0.5 inches. In addition, the geologic hazards evaluation identified expansive soils and potentially compressible soils on the site.

Kleinfelder, Inc., 2006. Geotechnical Investigation Report, Proposed Building Renovation, 2222 Cleveland Avenue, Santa Rosa, California. Kleinfelder Job No.: 72837

Kleinfelder, Inc. performed a geotechnical investigation for the proposed renovation of an existing structure located approximately 1,800 north of the study area. The investigation included drilling 2 borings within the structure to a depth of 15 feet bgs, and one boring along the exterior perimeter to a depth of 52.5 feet bgs. Near the surface, the borings encountered a maximum of approximately 3 feet of fill underlain by highly expansive in-situ clay. The surficial soils are underlain by discontinuous, heterogeneous alluvial layers consisting of medium to dense sand and gravel, and medium stiff to hard silt and clay. Groundwater was encountered between 7 and 11 feet bgs in the borings. The report recommended placement of 24 inches of select fill (below subgrade) in new construction areas. The report stated that thin (approximately 1 foot thick) sand layers encountered at the site have the potential to liquefy during seismic events, but engineering analysis indicated the liquefaction would have little to no effect at the surface.

GEOLOGIC HAZARDS

Geologic/seismic and subsurface conditions in the site vicinity described in this memorandum are based on existing available geologic maps and literature as well as geotechnical investigations performed by private consultants. On the basis of those conditions, the potential for adverse geologic hazards that may influence the study area are discussed below.

Groundwater

The three consultant reports indicate groundwater was encountered between 5 and 11 feet bgs in the vicinity of the site. Recorded measurements of California Department of Water Resources monitoring wells within the Santa Rosa plain indicate fluctuating groundwater levels between 20 and 50 feet bgs. Shallow perched groundwater (within 5 feet of the surface) should be anticipated within the study area.

Expansive, Compressible, and Collapsible Soils

Expansive soils have the capacity to undergo large volume changes with changes in moisture content and typically are associated with high plasticity. Compressible soils are typically fine-grained soils that possess low density and are incapable of supporting significant vertical loads
without excessive settlement. Compressible soils tend to coincide with younger, Holocene age deposits that have not had sufficient time to densify.

The Harding-Lawson Associates report identified surficial soils of low expansion potential and moderate compressibility at the gymnasium site. Herzog encountered highly plastic surface and near-surface soils. The Kleinfelder, Inc. report encountered high plasticity near-surface soils underlain by potentially compressible soils of varied depth and thickness.

As such, it is our opinion that the existence of expansive and compressible soils should be anticipated within the study area.

**Ground Surface Rupture**

The nearest known active fault is the Healdsburg-Rodgers Creek fault, located approximately 5,600 feet northeast of the site. There are no known faults crossing the site. As such, the potential for ground rupture to occur at this site is considered to be low.

**Earthquake Ground Motions**

The site will experience strong seismic ground shaking resulting from future earthquakes on the Healdsburg-Rodgers Creek, Maacama, San Andreas, and other active faults in the region during the lifetime of construction at this site. Time, location, and magnitude of earthquakes are not accurately predictable with existing technology. It is, however, generally agreed that the intensity of ground shaking from future earthquakes will depend on several factors including the distance from the site to the earthquake focus, the magnitude and duration of the earthquake, and the response of the underlying soil and bedrock. It will be necessary to design the proposed overcrossing in accordance with the earthquake-resistant provisions of ASCE/SEI 31-03, Seismic Evaluation of Existing Buildings, published by American Society of Civil Engineers (ASCE) and the Structural Engineering Institute, or by an appropriate standard. Based on our interpretations of the findings and the field and laboratory investigation portions of the consultant reports reviewed for this study, we consider the preliminary site soil class for the site to be Class D. Class designation at the site should be confirmed through a site-specific, comprehensive geotechnical investigation.

**Liquefaction and Lateral Spreading**

Soil liquefaction is a condition where saturated, granular soil undergoes a substantial loss of strength due to pore pressure increase resulting from cyclic stress application induced by earthquakes. In the process, the soil acquires mobility sufficient to permit both horizontal and vertical movements if the soil mass is not confined. Soils most susceptible to liquefaction are saturated, loose, clean, uniformly graded sand deposits. If liquefaction occurs, foundations resting on or within the liquefiable layer may undergo settlements. Sowers et al. (1998, United States Geological Survey Open File Report OFR 98-460, Quaternary Deposits and
Liquefaction Susceptibility Maps, Napa, California, 1:100,000 Quadrangle: A Digital Database) indicate the site is underlain by Holocene age fan deposits with moderate susceptibility to liquefaction. The reports produced by Herzog Geotechnical Consulting Services for the Santa Rosa Junior College, and by Kleinfelder, Inc. for the structure renovation both identified liquefiable alluvial soils underlying their respective sites. The coarse grained alluvial deposits encountered by Harding-Lawson Associates in their borings could potentially be considered liquefiable by current standards. Based on this limited data, it is our opinion the potential for liquefaction to occur on the site is moderate. A site-specific geotechnical investigation, including exploratory borings located at the proposed location of each foundation element, advanced to a minimum of 50 feet below the existing ground surface and liquefaction analysis, should be performed.

Lateral spreading and lurching are potential secondary seismic effects commonly associated with liquefaction where extensional ground cracking and settlement occur as a response to lateral migration of liquefiable material. These phenomena typically occur adjacent to free faces such as steep slopes and creek channels. The site is located on an essentially flat plain with no apparent drainage channels within or in close proximity to the study area. As such, we believe the potential for lateral spreading or lurching within the study area is low.

**Landsides and Slope Instability**

The site is located on an effectively flat plain. Thus the potential for landsliding and slope instability to occur within the study area is believed to be non-existent.

**Tsunami and Seiche**

Tsunamis are oceanic waves that are generated by earthquakes, submarine volcanic eruptions, or large submarine landslides. The waves are generally formed in groups that may have very long wavelengths (several miles to more than 100 miles), but only a few feet high. As a tsunami enters shallow water near coastlines, the wave velocity diminishes and the wave height increases. If the trough of the wave reaches land first, the arrival of a tsunami is preceded by recession of coastal waters; if the crest of the wave reaches land first, there would be a rise in water level. The large waves that follow can crest at heights of more than 50 feet and strike with devastating force. However, since the study area is more than 19 miles from the nearest coastline, the potential for this condition is considered non-existent.

Seiche is a standing wave condition whereby large bodies of water, when subjected to seismic accelerations, can generate significant waves that overtop the basin boundaries. The nearest large body of water to the site is 2 miles to the north/northeast. Therefore, the potential for a seiche hazard within the study area is also non-existent.
FOUNDATIONS

Previous investigations have identified compressible, expansive, and potentially liqueifiable soils extending to depths exceeding 10 feet. Groundwater was encountered as shallow as five feet. It may be possible to support the proposed structure on shallow foundations by over-excavating and replacing poorer quality soils. However, the depth of these poor quality soils, in combination with the potential for shallow groundwater, will probably make this economically impractical. The preferred foundation system is likely to consist of some type of deep foundation.

Because of the high groundwater table and sandy nature of some of the soils at this site, drilled shafts or deep excavations may tend to cave and slough. Casing or drilling with slurry could be required for this type of deep foundation installation. Based on the preceding comments, it is our opinion that driven piling probably offer the best type of foundation support for the proposed facility. If construction noise and/or vibrations are a concern, then alternative foundation systems, such as augercast piles or proprietary systems, such as Tubex or Torque Down piles could be considered, usually at higher cost. Driven piling should be able to provide adequate support for both downward and uplift loads. Lateral loads can be resisted by a combination of pile stiffness and passive pressure against the pile cap. Soil conditions are variable and pile lengths should be based on a combination of depth and driving resistance (blow counts). A detailed site specific geotechnical investigation would be required to provide specific information on pile capacities and/or alternative foundation designs.

LIMITATIONS

This memorandum has been prepared by Kleinfelder for the exclusive use of Steven Grover & Associates and their consultants for development of the proposed project described in this memorandum. Conclusions in this memorandum are intended for preliminary planning purposes only and are not adequate for project design.

This memorandum represents a preliminary assessment of the study area based on existing and accessible data from our files. No subsurface investigation or laboratory testing was performed for the study by Kleinfelder nor does this memorandum provide engineering analysis or recommendations for the project. We provide no other warranty, either expressed or implied. Additional planning or design must be accompanied by a detailed geotechnical investigation of the site proper.

Site conditions and cultural features described in the text of this report are those existing at the time of this assessment, and may not necessarily be the same or comparable at other times.

This memorandum may be used only by Steven Grover & Associates and only for the purposes stated, within a reasonable time from its issuance, but in no event later than 18
months from the date of the report. Land or facility use, on and off-site conditions, regulations, or other factors may change over time, and additional work may be required with the passage of time. Based on the intended use of the memorandum, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party and client agrees to defend, indemnify, and hold harmless Kleinfelder from any claim or liability associated with such unauthorized use or non-compliance.

We trust this memorandum provides you with the information needed at this time. If you have questions or require further assistance, please contact us at (707) 571-1883.

Sincerely,

KLEINFELDER WEST, INC.

[Signature]

Jeff Richmond, CEG 2424
Project Geologist

[Signature]

Terence Craven, GE 2572
Principal Geotechnical Engineer
## D. Alternatives Cost Detail

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>West Trail</th>
<th>West Ramp on Fill</th>
<th>West Side Span #1</th>
<th>West side span #2</th>
<th>West Side Span #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>1:20 ramps both sides. Acquisition of 200 326</td>
<td>200</td>
<td>326</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 1,000,000.00 $ 2,282,000.00</td>
<td>$ 1,000,000.00</td>
<td>$ 2,282,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>52</td>
<td>140</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 364,000.00</td>
<td>$ 900,000.00</td>
<td>$ 364,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ 980,000.00 $ 1,169,000.00</td>
<td>$ 980,000.00</td>
<td>$ 1,169,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>52</td>
<td>140</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-4</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-5</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-6</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-7</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-1</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1</td>
<td>1:20 straight ramp west, 1:12 curling</td>
<td>180</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT COST $ 5,000.00 $ 7,000.00</td>
<td>$ 5,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL $ 900,000.00 $ 1,071,000.00</td>
<td>$ 900,000.00</td>
<td>$ 1,071,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Main Span</td>
<td>Main Span #2</td>
<td>East side span #1</td>
<td>East Side Span #2</td>
<td>East Side Span #3</td>
<td>East Ramp on Fill</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>A-1</td>
<td>177</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>$ 9,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 1,593,000.00</td>
<td>$ 1,400,000.00</td>
<td></td>
<td>$ -</td>
<td>$ -</td>
<td>$ 1,200,000.00</td>
</tr>
<tr>
<td>A-2</td>
<td>182</td>
<td>77</td>
<td>90</td>
<td>54</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td>$ 7,000.00</td>
<td>$ 7,000.00</td>
<td>$ 7,000.00</td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 1,401,400.00</td>
<td>$ 539,000.00</td>
<td>$ 630,000.00</td>
<td>$ 378,000.00</td>
<td>$ 775,000.00</td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>179</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 1,378,300.00</td>
<td>$ 868,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 750,000.00</td>
</tr>
<tr>
<td>B-1</td>
<td>140</td>
<td>238</td>
<td></td>
<td></td>
<td></td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>$ 9,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 1,260,000.00</td>
<td>$ 1,666,000.00</td>
<td></td>
<td>$ -</td>
<td></td>
<td>$ 1,365,000.00</td>
</tr>
<tr>
<td>B-2</td>
<td>181</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 1,393,700.00</td>
<td>$ 1,400,000.00</td>
<td></td>
<td>$ -</td>
<td></td>
<td>$ 1,000,000.00</td>
</tr>
<tr>
<td>B-3</td>
<td>87</td>
<td>69</td>
<td>93</td>
<td>70</td>
<td>83</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td>$ 7,000.00</td>
<td>$ 7,000.00</td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 669,900.00</td>
<td>$ 531,300.00</td>
<td>$ 651,000.00</td>
<td>$ 490,000.00</td>
<td>$ 581,000.00</td>
<td>$ 570,000.00</td>
</tr>
<tr>
<td>B-4</td>
<td>163</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 1,255,100.00</td>
<td>$ 1,260,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 750,000.00</td>
</tr>
<tr>
<td>B-5</td>
<td>162</td>
<td>101</td>
<td>79</td>
<td></td>
<td></td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 1,247,400.00</td>
<td>$ 707,000.00</td>
<td>$ 553,000.00</td>
<td></td>
<td></td>
<td>$ 705,000.00</td>
</tr>
<tr>
<td>B-6</td>
<td>212</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ 1,632,400.00</td>
<td>$ 175,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-7</td>
<td>163</td>
<td>81</td>
<td>221</td>
<td></td>
<td></td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 1,255,100.00</td>
<td>$ 567,000.00</td>
<td>$ 1,547,000.00</td>
<td></td>
<td></td>
<td>$ 705,000.00</td>
</tr>
<tr>
<td>B-8</td>
<td>330</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>$ 7,700.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 2,541,000.00</td>
<td>$ 2,100,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 705,000.00</td>
</tr>
<tr>
<td>F-1</td>
<td>230</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>$ 9,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 2,070,000.00</td>
<td>$ 1,330,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 950,000.00</td>
</tr>
<tr>
<td>G-1</td>
<td>296</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>$ 10,000.00</td>
<td>$ 7,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 5,000.00</td>
</tr>
<tr>
<td></td>
<td>$ 2,960,000.00</td>
<td>$ 1,750,000.00</td>
<td></td>
<td></td>
<td></td>
<td>$ 950,000.00</td>
</tr>
<tr>
<td>Name</td>
<td>East Trail</td>
<td>ctr. Support</td>
<td><strong>Total Bridge COST</strong></td>
<td>UTILITIES</td>
<td>PROPERTY</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>A-1</td>
<td></td>
<td>1143</td>
<td>$6,539.81 PER L.F.</td>
<td>$40,000.00</td>
<td>$680,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$7,475,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td></td>
<td>1097</td>
<td>$6,505.38 PER L.F.</td>
<td>$40,000.00</td>
<td>$500,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$7,136,400.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td></td>
<td>786</td>
<td>$6,319.72 PER L.F.</td>
<td>$40,000.00</td>
<td>$200,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$4,967,300.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td></td>
<td>1121</td>
<td>$6,441.57 PER L.F.</td>
<td>$500,000.00</td>
<td>$500,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$7,221,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td></td>
<td>1038</td>
<td>$6,447.69 PER L.F.</td>
<td>$500,000.00</td>
<td>$1,500,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$6,692,700.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td></td>
<td>864</td>
<td>$6,610.19 PER L.F.</td>
<td>$500,000.00</td>
<td>$100,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5,711,200.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-4</td>
<td></td>
<td>857</td>
<td>$6,430.69 PER L.F.</td>
<td>$500,000.00</td>
<td>$100,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5,511,100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-5</td>
<td>23</td>
<td>847</td>
<td>$6,444.39 PER L.F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5,458,400.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-6</td>
<td></td>
<td>311</td>
<td>$7,477.17 PER L.F.</td>
<td>$500,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$2,325,400.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-7</td>
<td></td>
<td>971</td>
<td>$6,514.01 PER L.F.</td>
<td>$500,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$6,325,100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td></td>
<td>1141</td>
<td>$6,604.73 PER L.F.</td>
<td>$500,000.00</td>
<td>$1,500,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$7,536,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-1</td>
<td>1800</td>
<td>980</td>
<td>$6,806.87 PER L.F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$6,806.87 PER L.F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1</td>
<td>1800</td>
<td>1116</td>
<td>$7,209.88 PER L.F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$7,209.88 PER L.F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$8,046,230.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>ELEVATOR</td>
<td>FWY. SIGN</td>
<td>SUBTOTAL</td>
<td>contingency</td>
<td>SUBTOTAL</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>A-1</td>
<td>$8,195,000.00</td>
<td>0.25 $2,048,750.00</td>
<td>$10,243,750.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>$7,676,400.00</td>
<td>0.25 $1,919,100.00</td>
<td>$9,595,500.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>$5,207,300.00</td>
<td>0.25 $1,301,825.00</td>
<td>$6,509,125.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td>$8,221,000.00</td>
<td>0.25 $2,055,250.00</td>
<td>$10,276,250.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>$8,692,700.00</td>
<td>0.25 $2,173,175.00</td>
<td>$10,865,875.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>$250,000.00</td>
<td>$6,561,200.00</td>
<td>0.25 $1,640,300.00</td>
<td>$8,201,500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-4</td>
<td>$250,000.00</td>
<td>$6,361,100.00</td>
<td>0.25 $1,590,275.00</td>
<td>$7,951,375.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-5</td>
<td>$250,000.00</td>
<td>$6,208,400.00</td>
<td>0.25 $1,552,100.00</td>
<td>$7,760,500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-6</td>
<td>$1,000,000.00</td>
<td>$3,975,400.00</td>
<td>0.25 $993,850.00</td>
<td>$4,969,250.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-7</td>
<td>$250,000.00</td>
<td>$7,075,100.00</td>
<td>0.25 $1,768,775.00</td>
<td>$8,843,875.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td>$9,536,000.00</td>
<td>0.25 $2,384,000.00</td>
<td>$11,920,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-1</td>
<td>$250,000.00</td>
<td>$6,960,730.00</td>
<td>0.20 $1,392,146.00</td>
<td>$8,352,876.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1</td>
<td>$8,461,380.00</td>
<td>0.20 $1,692,276.00</td>
<td>$10,153,656.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>softcost</td>
<td>TOTAL PROJECT COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-1</td>
<td>0.30 $</td>
<td>3,073,125.00 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13,316,875.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>0.30 $</td>
<td>2,878,650.00 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12,474,150.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>0.30 $</td>
<td>1,952,737.50 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,461,862.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td>0.30 $</td>
<td>3,082,875.00 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13,359,125.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>0.30 $</td>
<td>3,259,762.50 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14,125,637.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>0.30 $</td>
<td>2,460,450.00 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,661,950.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-4</td>
<td>0.30 $</td>
<td>2,385,412.50 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,336,787.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-5</td>
<td>0.30 $</td>
<td>2,328,150.00 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,088,650.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-6</td>
<td>0.30 $</td>
<td>1,490,775.00 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,460,025.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-7</td>
<td>0.30 $</td>
<td>2,653,162.50 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,497,037.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td>0.30 $</td>
<td>3,576,000.00 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,496,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-1</td>
<td>0.20 $</td>
<td>1,670,575.20 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,023,451.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1</td>
<td>0.20 $</td>
<td>2,030,731.20 $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12,184,387.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E. Community Meeting Minutes

First Community Meeting Notes

Date: Thursday, February 19, 2009

Time: 7:00pm

Location: Odd Fellows Hall, 545 Pacific Avenue, Santa Rosa

Speakers:

Mr. Otto Bertolero, City of Santa Rosa, Public Works Department
Mr. Gary Wysocky, City Council
Mr. Steven Grover, Steven Grover & Associates

Presentation Format:

- Attendees were asked to sign-in at the door and were furnished with a hand-out detailing the agenda for the evening. Site maps of the project area were posted around the meeting hall.
- At 7:00pm, Mr. Bertolero introduced Mr. Wysocky.
- Mr. Wysocky introduced members of boards and commissions in the audience: City officials, representatives from the Community Advisory Board, BPAB, Planning Commission, City Council, and Santa Rosa Junior College were present. Mr. Wysocky explained that no action would be taken at this meeting, and that the purpose of the meeting was to receive input from the public regarding the proposed project.
- Mr. Wysocky then turned it over to Mr. Bertolero, who introduced Mr. Grover.
- After the introductions, Mr. Grover took the floor and began a slide show that ran until approximately 8:30 pm.
- After the slide show, an additional handout was distributed to the attendees. This handout was a set of worksheets that attendees were asked to fill out and return either at the completion of the presentation or to the City by mail or email. This handout included several questions that will help ascertain key community concerns and issues related to the pedestrian bridge.
- Mr. Grover then opened the floor for questions. The Q&A session lasted until approximately 10:00 pm.
- Mr. Wysocky adjourned the meeting at 10:00 pm.

Discussion:

The slide show presented by Mr. Grover provided the public with an overview of the many varieties, types, and styles of pedestrian bridges that can be found around the United States and in other countries. The purpose of this overview was to engage the audience in thinking...
about what makes a bridge project like this successful, to demonstrate why a certain bridge type is suitable for a specific site and to outline the myriad of criterion that play a role in selecting a bridge configuration.

Key design criteria items discussed by Mr. Grover included cost/benefit analyses, user-experiences, user-safety, context (site surroundings), viewer experiences, and structural needs. Some or all of these criteria were described for each of the example bridges shown in the slide show to allow the audience to understand how a certain bridge type was selected.

Mr. Grover then moved on to present project-specific considerations as they relate to planning, usage, physical, and internal contexts. Excerpts from various master plans and planning documents were shown, as were site maps illustrating land use constraints and opportunities, proposed and existing bike routes in the area, and alignment possibilities. Based on these guidelines, Mr. Grover described some of the site-specific issues including site topography, traffic flow patterns (vehicular, pedestrian, and bicyclist), and user safety.

At this point the community participation handout was distributed. After approximately 15 minutes, the question and answer session began.

For more details on Mr. Grover’s general overview of bridge types and design criteria, please see Exhibit A.

For more details on the second part of Mr. Grover’s presentation, on project-specific considerations, please see Exhibit B.

**Comments and Q&A**

1) One of the assumptions you made was that the bus stops are fixed. Bus stops can be moved much more easily. SMART plan has emphasized connectivity.

2) Several CityBus routes go to Coddingtown. There are plans to extend bus routes southwards.

3) It is difficult for me to imagine that walkers can feel safe without a separated space. Do you have experience with other modes or designs where pedestrians are as comfortable without some sort of separations?
   a. There have been recent articles about conflicts between peds and bikes on multi-use pathways. The trend is clearly toward 12’ wide standard. The idea of striping and mode separation is definitely not standard practice. Personally, I think it needs to be. How much do you think in 10 years will this bridge be used?

4) Prince Greenway bike path/walking path. I go over it twice a day. No separation between bikes and peds. I like your mode separation idea.
   a. One of the things to keep in mind in terms of difference between an overpass and a multi-use trail is shy distance. On an overpass, you need to add at least a foot of width to the side so that pedestrians feel safe.

5) Do you plan for peds to walk in pairs? Have bikes go single file? I don’t know if Santa Rosa is thinking of a lightrail – is it being taken into account?
   a. Pedestrians will tend to walk in pairs unless you cue them to do otherwise. By creating an actual curb, peds like to stay up on the sidewalk because they don’t like to be in “roadway”. Does anyone know about lightrail?

6) I know of some talk about a possible shuttle. How wide is the bridge?
a. In Berkeley, the width is 15’ – about 5’/5’/5’

7) Why not make it wider? Make it wide enough so peds feel safe.
   a. Cost of a spanning structure is roughly proportional to width. Foundation costs and construction costs for erection processes and mobilization costs are a very large part of budget. Sometimes this can be justified if there is enough projected usage.

8) I am concerned about children and kids on skateboards. Will there be separation for skateboards? We are always on the west side of 101 but we do a lot on the east side. I drive mostly now. I’m wimpy and would not feel safe riding.
   a. At Homer Ave we put in skateboard deterrent things on edges, which is now a standard practice. On long downgrade ramps, people are going to use it for skateboarding. It would be a City policy question whether it is allowed. I think we need to design for skateboards even if they would not be used. Good design is always better than good signs.

9) I think we need a north-south pedestrian route in order for this to be used a lot.
   a. SMART corridor is also going to be a bike/ped thoroughfare.

10) What is the projected cost for this? When will it happen? How is it going to be paid for?
    a. Come to the 2nd meeting and you’ll get better answers. This first meeting we will focus on where is the preferred location, then we will drill into details. There is roughly half a mile of possible area where we can put this thing. There are a lot of utilities. In order to plan this right, we need to know where everything is. Story: master plan for Berkeley called for putting nice landscape berms between water and freeway. Unfortunately, the people who put together the master plan failed to know that there was an existing old sewer line, which threw the whole master plan out the window. This first meeting is for info gathering, so that we can provide answers during 2nd meeting.

11) My wife won’t use east-west Joe Rodota trail due to concerns about safety. Armory in south side is a local shelter (not anymore). Concerns about personal safety, homeless shelters.

12) I live in the JC neighborhood. I teach at the JC, at classes all around town. Whenever I’m asked to teach a new class, I look at map and bus schedules. I always try biking a few times, each time is harrowing. A year and a half ago, I was asked to take on a new class. I thought we’re going get a bike/ped bridge. My vote is to connect Armory Road to Jennings, but just put one in anywhere.
    a. You are talking about cycling specifically. If your primary mode is walking, would you feel the same? What about bike lanes on Steele/College?

13) Joe Rodota trail is safe. I take the bus and bring my bike on. The proposed location dumping people out onto JC campus is scary. Unless you have a contract or agreement with the JC, there’ll be a problem. Cycling on JC campus is awful. We’re not allowed to cycle on campus at all. We can cycle on Elliott. I think a touchdown on Scholars is fine. The two southern routes, proximity to downtown make sense.

14) Crossing the Steele Lane or College underpass: you literally take your life in your hands, it is a very scary experience. Bike lanes aren’t going to make a difference. Because of on/off ramps, it is a convoluted situation. There is no direct way – you have to cross streets.
    a. Police Dept gave us some up-to-date stats: about 1 accident per month in this region (bike and vehicle).

15) I am a student of the JC and a resident of the JC area. The campus is not designed for pedestrians and cyclists. Even without having overpass, it is insane there already. If more people cycling on campus are cutting towards Mendocino, that would be insane.
Elliott would work best. Separation between vehicles and bike/peds needs to be studied.

16) If you are putting in a ped underpass under the tracks on Jennings, the Public Utilities Commission will be difficult to deal with. Maybe you could make it a vehicle underpass, too. I think the platform could be a little bit south of Jennings. To serve JC/Coddingtown area, a northern alignment is better.
   a. If an underpass is going in, it should happen before other development.

17) I have worked around the JC in the past. Elliott is very crowded. When the light changes, people crossing don’t cross at the crosswalk and don’t wait for cars. Cars do the same thing. It would be a mistake to put it in on Elliott. No matter where it is, I want it, I don’t care even if I have to battle a bunch of pedestrians. Steele and College are both horrendous. I’m concerned about graffiti, I know there are materials you can use to deter it. At Prince Greenway, so much money was spent to make it nice, but there needs to be so much upkeep. Use some kind of material against graffiti and skateboarding.
   a. We’ll address those topics during detailed design phase.

18) Does the landing have to be in vicinity of JC? Wouldn’t it be helpful to enhance the crossing experience at College or Steele by putting the overcrossing right on College, for example? That would create a natural corridor which continues along College Ave, right in the middle of Santa Rosa. There would be greater utility so much beyond the JC that the bridge may have more utility overall.
   a. Putting an overcrossing right at a major highway interchange like College is difficult – jumping over on/off ramp the thing gets so long, or coming down amidst of on/off ramps defeats the purpose in terms of safety.

19) Can you connect to a bike path? Connect to Sebastopol, for example?
   a. Bear Cub vs. Elliott – show of hands?

20) I’m not sure how you’ll deal with Bear Cub, but bike/ped facilities need to be separated from parking facilities. And do this project!

21) The atmosphere of competition on JC streets (Mendocino, for instance): it’s like a “U of death”. It’s the source for all congestion, with people hurrying into classes. Parking structure right in the middle of Mendocino makes it worse. Take a bit of Coddingtown parking lot for JC use.

22) I live one block north of Elliott, and I walk to JC campus often. I don’t think you want a landing on Elliott. Elliott is a very busy street, a lot of peds traveling between two sides of campus. Bear Cub is through street not heavily used except for parking, so it’s not necessarily bad. When you’re parking you’re going slowly. Scholars goes into middle of campus and kind of dies, access to faculty parking. I would vote for Bear Cub. There’s a turn lane on Elliott, but it’s a very busy street. Close Elliott to cars? That had been discussed for years, it’ll be interesting to see what the neighborhood reception is. I’ve been told that the JC is the biggest trip generator of Sonoma County. Traffic on Steele and College both quite bad. Steele & Administration/Armory is the intersection with heaviest traffic. This bridge has the potential to give Santa Rosa an identity, if done with architectural flair. I want this overcrossing. I want to reduce traffic. JC and SMART train are perfect for each other.

23) I like the Bear Cub alignment. Pacific to Bear Cub across Mendocino has stop light. Intersection at Elliott and Mendocino, Dexter St doesn’t line up, there’s a concrete median, and at the light to continue into the neighborhood you have to turn left – not a great intersection for cyclists. I am more scared to bicycle here than in San Francisco. Class 2 bike lanes probably not to be seen in the near future, there’s just too much traffic.
24) Curt Groninga from the JC. I concur that Elliott Ave is most horrific location when you have cars, students crossing that street, trucks, so forth. When we looked at it in working with the City, it is our understanding that the point of connections are at Mendocino and Bear Cub, and Bear Cub and Armory set out to be Class 3 bicycle route. Logically if one of the goals here is to benefit the students, and going back to discussions with SMART folks years ago on this, then it would seem like you’d want to make this closer to SMART, and use the Bear Cub/Armory Drive location. One other point you’d want to take into consideration: there are reasons why we don’t want folks riding a bike on campus pedestrian paths, which will lead to conflicts between bicycles and pedestrians, and between bikes and disabled population. We have one of the largest disabled populations among community colleges. Also a large senior population. Mode separation will be important.

25) SMART does not own any location, they have not committed to where the station will be. It is misleading to show station location on you map. Coddingtown will in its future get use from high-density, so getting SMART to get closer to Coddingtown would have advantages. Synergy between SMART’s need for parking and Coddingtown’s need for parking, could be complementary. One way to see a lot of use on this bridge is to get a shuttle running on it. Back to getting it wider. Electric shuttle running across there. Aesthetic part, we have multiple icons/mascots around Santa Rosa and the Schultz museum, what design elements will this bridge have?

26) When I travel, I use my bicycle as often as I can. If going east to west, I’d want as direct a route as possible. Pacific to Bear Cub.

27) Matt Stevens, representing SMART district. SMART is actively pursuing Union Pacific property right now.

28) I think most of us are from Santa Rosa but there are a lot of students from all over who go to the JC, which is why there’s so much traffic going to the JC. There are not a lot of options to get to the JC from Petaluma or Cloverdale, where are no colleges. I took the bus to the JC when I lived in Petaluma after I graduated from high school. If there was a SMART train, I would be trying to get from the station to the JC so it’s way beyond Santa Rosa we have to think about in thinking about accommodating people.

29) I have a concern about landing in the JC during off hours. It’s dark and spooky there.

30) I live in the Ridgeway District, and I work over at Dutton Ave and Tesconi Circle, and my concern is if I use the bridge to commute to work, everybody will be commuting to the JC, what’s the possibility there will be a conflict when large pool of people coming off the train and JC people going opposite direction?
Exhibit A – Detailed summary of Mr. Grover’s presentation (Part 1)

- **Introduction**
  - Key questions:
    - Why do a project like this in thick of economic downturn?
    - How does a project like this happen? What are the sequence of steps?
    - When is it going to happen?
    - Where is it going to go?
  - Some of these questions addressed tonight, others at next public meeting.
  - The question most interested in for this meeting is “what”
    - Interested in defining the problem.
    - The clearer we define the problem, the smoother the process will be.
  - From experience: importance of upfront work to avoid surprises later, value of community’s input.
    - San Lorenzo bridge project: at the 2nd or 3rd public meeting, we learned from a member of audience that there was a major bird migratory path right down river bed. All design work with cable-supported structures went out the window.
    - Public is one of best resources there is at this stage.
  - Unique about bike/ped projects: we don’t have the data to work with the way traffic engineers do, therefore public input on how heavily something might be used, potential mode split, key origins-destinations, etc. is very important.
  - Each project is quite different from the last.
    - Bridge in Durham, NC, is very “happy”: no ramping structures required, raised embankment on both sides of freeway, no need to fit ramping into urban and landscape context.
    - Bridge in Berkeley: we had to work very hard to find a way to weave ramping structures into existing roadscape and landscapes.
    - Bridge in Cupertino: there were existing vehicular ramps originally planned for an overpass that were then abandoned.
  - This bridge, if built, will be about 1000 ft long, but only 10-20% will be the bridge, which means 80%-90% needs to fit within existing streetscape.
  - We’ve done background work and have some handle on what your goals, issues, concerns are, but this is a project which requires spending taxpayer money, a project to be seen by many people.
  - Agenda tonight: Presentation (focusing on what makes a project like this successful), findings on planning context and urban design context, input sheets, Q&A’s.
  - We’ll try to keep agenda for tonight as tight as possible: we will not get into specific geometry of bridges, structure types, how they would appear from motorists’ point of view, no details on process involved, environmental/Caltrans review. We will be focusing on your overall goals, constraints, concerns.

- **What makes a project like this successful? One which makes the community proud, and the press excited?**
  - Is it money? Is it about putting a ton of money into it?
    - Bow Bridge in Central Park: tried to save money by using cast iron instead of stone, by working within their constraints.
    - Conventional design sometimes more expensive.
  - Innovation?
    - Sometimes inappropriate, sometimes not.
- Sundial Bridge: $20M
- Michigan “Tridge”: $2.8M in today’s dollars
- N-Judah roof structure: $300/square foot. El Cerrito roof structure: $70/sq ft
  - About design, not necessarily about dollars.
    - Good design is about proportions, relationship to context.
    - Longest, oldest, tallest?
      - Golden Gate Bridge is still very successful even though no longer longest suspension bridge.
    - Mimetic design?
      - Designing buildings to make it look like something, e.g. a building which looks like a basket.
      - Sundial: successful because it looks like a sundial?
      - Fish/bird bridge: successful because it was inspired by fish, not because it looks one.
      - DNA bridge
      - Native American-inspired theme in Arizona
      - Rattlesnake bridge (where?)
    - Shape, form, relationship to context
      - Maillart, Bridge in Switzerland
    - Relation of form to structural function
      - Bow Bridge
    - Experience of user
      - POC in Jack London Square vs. POC over Emeryville rail crossings
        - Look similar, but vastly different user experience
          - Use of materials, sense of openness
    - Fencing: keeps people from throwing stuff over the freeway.
    - Stripe down the middle: an innovation which makes a big difference.
      - Reminds you of when you’re driving
    - Cage structure: low cost, but very open feeling
    - Dramatic:
      - Santiago Calatrava in Chile
    - Bridge can be just a roadway, a conduit of travel. But if it is a pedestrian bridge, the pace is much slower, roadway becomes an architectural space.
      - Needs to breathe differently.
      - Pausing points, acknowledgement of good view.
      - If width of pathway varies, it makes the experience feel like an architectural space.
    - Inherent coherence of design
      - Internal coherence
    - Brooklyn Bridge: almost cathedral-like
    - Jurgen Schliach: crossing suspenders, fencing is a simple chain-link but relates to overall structure.
  - Approaches
    - Innovation at Berkeley Bridge: sidewalk, traditional way people understand separation of modes.
      - On freeway, ratio of fastest vehicle to slowest vehicle is about 2:1, but on a bike/ped bridge the ratio can be as much as 10:1.
      - Separate slow from fast on high volume use becomes important as usage increases.
- Mode separation is one major reason why Berkeley Bridge is so successful.
- Also in Homer Ave underpass.

  - Pedestrians need to feel safe
    - Crime
    - Bridge can become a catch point, throttle point, a place where you can get mugged.
    - Bridge is a place where you look from, not just a thing you see.
      - Viewing points, a place for people to stop: GG Bridge, Berkeley bridge (swept out over water), Tridge
    - Bridge needs to relate to context
      - Venice
      - Cupertino: suspension bridge
    - Respecting existing land uses, integrate urban design plans
      - Cupertino: Landscaping, retaining walls, pointy plants to keep zone completely separate from residential zone
    - Grab something from local context
      - Emeryville
    - Internal coherence:
      - North Carolina bridge example: truss conflicts with missile proof fence
      - Or, structure can be so much bigger than fence it recedes
    - ADA/ramp structures
      - Not necessarily good enough for cyclists
      - Usually have to exceed minimum requirements
      - Ramp structures
      - Keep ramping at gentler slope so ADA provisions don’t kick in
  - Pedestrian experience
    - Homer Ave: break down vertical walls with terraced landscaping
    - Use of materials
    - Graphic themes from context
Goals and Constraints for a project like this
- Planning Context
  - Land use and transportation plans
- Usage Context
  - Stakeholders’ needs
  - Maintenance issues
- Physical Context
  - Topography, existing land uses
- Internal Context
  - Fencing, ADA

This is a feasibility study
- We are here to assess benefits, impacts, complexity, costs, opportunities, functional and economic quality of life benefits.

Planning Context
- Santa Rosa Bike/Ped Master Plan calls this a “high priority project”.
  - Also proposes crossing of some kind over SMART rail, at Jennings.
  - Steele and College getting bike lanes, but it is still dangerous to ride through underpasses.
- SCTA Countywide Bike/Ped Plan:
  - Crossings over 101
  - Bicycle boulevards
- General Plan: strengthen east-west linkages
  - Jennings: bike boulevard
- SCTA Comprehensive Transportation Plan: listed project
- Measure M Project 14: access over 101
- SRJC Transportation Plan
- SMART

Where?
- Need to think about big planning point of view, not worrying about ramping and structures.
- If we could magically connect two points across 101, which ones?
  - Scholars and Jennings
  - Edwards and Elliott
  - Foley and Bear Cub Way
- Pedestrian comfortably and easily walks ¼ mile
  - ¼ mile from SRJC core pedestrian zone: into Coddingtown on west side, much of Mendocino Ave on east side.
- Existing or planned bike routes
- Land use: two campuses
  - About 60% of SRJC students commute from outside zip code.
  - Low numbers of students commuting to school by bike.
  - On west side, south of Coddingtown Mall, there has been an application for development of high-density housing, including postage stamp park.
  - Coddingtown Mall
  - Employment/Industrial
  - Residential
  - Potential SMART Station
- Bus routes: bus transit station on Range, west side of Mall
  - Some people have advocated for pushing SMART station northwards
  - More important to connect to train station or bus center?
- Origins and Destinations scenarios
  - Pacific Ave to SR Business Park
  - JC to Coddington
  - Walkable Mendocino Ave
    - But intersection at Mendocino & Pacific challenging
  - Exactly one mile between College and Steele
  - Dump bicycle traffic onto Elliott Ave?
  - More room southwards, Foley/Bear Cub Way
- Urban design
  - North of Jennings, land is pretty developed, more constraints, but greater opportunities to make connections to existing development.
    - Ramping structures
      - Loop-de-loop: like a building, and it obstructs views like a building would.
      - Run ramping along roadway: impact views for adjacent buildings, acts like a street
      - Thread between existing buildings: pick buildings with blind facades, weave through parking areas.
  - South of Jennings, wider and less developed
    - Fewer conflicts, opportunity for simpler structures, straighter runs, opportunity to contribute to urban design goals (e.g. ped pathway down from axis of Coddington?)
    - Can split difference between train station and bus transit center, going through developed area.
- Underpass?
  - Quite difficult to do
  - Freeway at about same grade as land surrounding it
    - At College Ave: Freeway is higher, so easier to do an underpass.
  - At this section of freeway, very long to get across and would require a deep tunnel.
  - Methods: cut and cover, trenchless methods.
Feasibility Study: Proposed Bicycle & Pedestrian Crossing over Hwy 101  
City of Santa Rosa, Public Works Department

Second Community Meeting Notes

Date: May 7, 2009

Time: 7:00pm

Location: Odd Fellows Hall, 545 Pacific Avenue, Santa Rosa

Speakers:
Ms. Susan Gorin, Mayor of City of Santa Rosa  
Mr. Otto Bertolero, City of Santa Rosa, Public Works Department  
Mr. Steven Grover, Steven Grover & Associates

Presentation Format:
- Attendees were asked to sign-in at the door and were furnished with a hand-out detailing the agenda for the evening. Site maps of the project area were posted around the meeting hall.
- At 7:00pm, Ms. Gorin provided a brief introduction. She explained that the overcrossing project is personally important to her as a cyclist who had a near-accident under the Steel Lane undercrossing. She brought the issue to the City Manager and asked it to be prioritized because of the danger to cyclists. She emphasized that the issue is also critical because the SMART train has been approved, and cyclists and pedestrians will need to be able to get to the station. She explained that this meeting will ask for the audience’s input on the design of the bridge, and reiterated the importance of public input. She reminded the audience that a final decision will not be made at this meeting.
- Ms. Gorin then turned it over to Mr. Bertolero, who told the audience that the City wants input on the location and design of the bridge, and introduced Mr. Grover.
- After the introductions, Mr. Grover took the floor and began a slide show.
- After the slide show, an additional handout was distributed to the attendees. This handout was a set of worksheets that attendees were asked to fill out and return either at the completion of the presentation or to the City by mail or email. This handout included three questions to the general public that will help ascertain key community concerns and issues related to bridge alignment, bridge width, and shape.
- Mr. Grover then opened the floor for questions.
- City officials adjourned the meeting.

Discussion:
Mr. Grover briefly reviewed the triangle input sheets from the first meeting. He emphasized the clear public mandate for the project, and discussed varying opinions on aesthetics and locations in the larger planning context. He then touched on the high points of his detailed
alignment options comparison, showing that various considerations point to the southern alignments.

Mr. Grover explained that the key considerations for smooth and expedited project development are that the project have very thorough review of alternatives and a strong community process, and that a clear plan emerges from that. He stated that soft costs can be significant on a project of this kind. He also said that having clear community support for a project is critical. He emphasized the value of the audience’s participation, and distributed the community participation handout, a triangle input sheet, to solicit comments and ranking preferences regarding alignment F, G, or other.

Mr. Grover then reviewed some of the basic considerations that go into identifying the best bridge design solution, including constructability, the community’s functional and aesthetic goals, impacts on adjacent uses, and maintainability. He made a few comparisons with other similar and recent projects, and then presented the design studies he prepared, focusing on the relative merits of alignments F and G.
Exhibit A – Detailed summary of Mr. Grover’s presentation (Part 1)

- **Introduction**
  - Outline:
    - Review of results of community input from last meeting
    - Quick comparison of different alignment options
    - Where the firm is in process of project
    - Triangle input sheets for notetaking during speech
    - Audience input is critical
    - Review of prepared design studies
    - Because project is complex, it’s not obvious where bridge should go, therefore studies are massing studies, rather than detailed renderings
    - After meeting, will take next steps

- **Results from Input Sheets from First Meeting**
  - Clear need for project in the community
  - In terms of aesthetics, pretty clear mandate for visual appeal
  - Standard crossing design not seen as adequate for the community’s cycling and pedestrian needs, with need for more safety and more inviting design
  - In terms of location, spent a lot of time looking at overall transportation importance. Considering the new rail station, bus station, mall and JC. There were clusters in all areas, but more people leaning towards southern alignments.
    - In first meeting, tried to present issues from purely transportation planning point of view, because we didn’t want to look at minute details. Hopefully got a good picture of the larger planning context.
    - For connections, the SMART rail was seen as the most important
    - JC expressed preference that bridge be located at southern alignment to fall on Bear Cub Way

- **Alignment Options**
  - Important to spend time on this, to build consensus around right option
  - **Alignment A**
    - Longer span because freeway is widening for on and off-ramps
    - Comes down adjacent to Armory; many utilities and trees and front of JC District Police Station. Impact on Armory Street or trees and police station views. On west side, relatively open.
    - From larger transportation perspective, Elliot seems to be good route for cyclists.
    - Would have to work to get right ramp length.
  - **Alignment B**
    - Only real feasible option was to use loops or ramp towers of some type at the corner of the parking lot of the police station
    - Would conflict with some trees and utilities, and take some of the former Los Robles Lodge parking lot
    - Many overhead utilities would come into play, and though there are impacts for all alignments, they’re a little more difficult here
    - Also have freeway sign which probably could stay, but may need to be removed
    - Showed example of recent ramp tower, as compact as possible. This type of design would be what you’d do if there weren’t any other
alternatives, and would require design exemption from CalTrans for tight turns coming down ramp.
- Would also be dropping people off in the middle of the block, which is not ideal for cyclists

- **Alignment C**
  - Another type of alignment, horseshoe-shaped
  - Requires dropping people off on freeway side, and ruled out because doesn’t improve safety enough to merit expense
  - Would drop down near Scholars and near Jennings

- **Alignment D**
  - Relatively promising alternative
  - Connects right to Jennings, major east-west bicycle boulevard
  - Dropping down in paved area, not taking out trees, but at steepest ramp slopes some trouble
  - On west side, coming down between two blind facades, impacting some parking

- **Alignment E**
  - Makes use of new long right-hand turn lane
  - Unfortunately comes out right at driveway for the apartments, and would impact views for residents
  - Some tree issues on the other side
  - Would have to get design exception on the radii

- All of the alignments so far have been in a part of the city where there are already a lot of buildings, so from a bridge design point of view you don’t have a lot of open space to bring in construction equipment. This probably leads more toward the type of structure where you have a center support, although there are exceptions.

- A question was asked about ramp slope. A: All of the alignments shown so far have been modeled with the maximum allowable ramp slope, which is 1:12. In other words, for every 12 feet you go horizontally, you rise one foot. And you can’t go more than 30 feet without having a flat spot.

- **Alignment F**
  - Distinct advantage of being perpendicular to freeway, so it’s the shortest span
  - Comes in between two buildings, so one of the most important things to discuss tonight is the impacts on these buildings, and whether they are acceptable and how they can be mitigated.
  - The landing is on Bear Cub Way, which has been identified by the JC as their preferred location for bicycles
  - Comes in between two trees
  - Unfortunately, would require moving a freeway sign. Sign warns of exit, and the location is further south than it typically would be by CalTrans guidelines, but probably could be moved north. Haven’t received details from CalTrans yet.
    - A question was asked regarding putting the sign on the overpass. A: That has come up in other projects. It’s a concern for CalTrans because it’s harder to maintain them; it’s a concern for visibility for bicyclists and pedestrians using the overpass, and it can be an aesthetic concern. It can be a wind-loading issue, so it’s not the preferred solution. It’s done, but it’s something that we would...
prefer to avoid if there’s an alternative. Perhaps more importantly, CalTrans would prefer to avoid it.

- A question was asked about the connectivity on the west end, and it was deferred until a later point.
- Connection comes between two buildings, Enterprise Rent-a-Car and a music school. It comes over a parking lot, with a support at the front and back of the parking lot.

  - **Alignment G**
    - Far enough from freeway sign that it can probably stay where it is
    - Biggest drawback to this alignment is the fact that it’s skewed with respect to the freeway. That makes it 28% longer than F. 28% longer translates into about 65 feet. At $10-25,000 per foot, we’re talking about over $500,000 difference in cost. Keep in mind you have to look at these things from the perspective of the overall budget. And you have to offset it against the fact that you probably wouldn’t have to remove the freeway sign. All of these factors have to be put into the proper perspective when we weigh our input. I wouldn’t say just because it’s longer it’s a deal-killer. If this is where the community wants to put it, this is where it should go. But it’s something to factor in. It’s longer and will be harder to build and more expensive, but it’s nice and straight, so that’s easier to build.
    - The steeper slope shown on the diagram is the maximum ramp slope for ADA accessibility. Requires a rub rail for wheelchairs, and a handrail, and makes bicycles bump going down the slope.
    - The 1:20 slope is not considered a ramp, but a pathway. You don’t need the railings, and can have a smooth pathway. This is what was used for the Berkeley bridge. It’s a question of accessibility and its importance. In this case, there are probably advantages to using the gentler slope, because you’d impact less of the parking that’s being used by these buildings.
    - A long straight line is not necessarily considered safest because you can pick up speed on a bicycle, so maybe it needs to undulate a little. That’s the kind of refinement we’d look at at a later stage.
    - I won’t go into detail, but we looked at the walking distances for the various alignments. We can come back to this.
    - A question was asked regarding the difference between 1:20 and 1:12. A: We have a slide coming up that shows the difference in cost.
    - A question was asked about the difference in cost based on ease of construction versus the length. A: Alignment F and G are similar in terms of ease of construction. F is a little more complicated because you probably don’t want to use the parking lot as a layout area for very long. But I don’t think there is a significant cost differential in terms of ease of construction. Alignment G is a much longer span, which makes it more difficult in a number of ways. You put up temporary supports in the middle of the freeway and the sides, but then you have other expenses. I don’t know if it’s a wash, but...

**Key considerations about this type of project**

- If project is very well-defined, and the community can build consensus around that, soft costs can be greatly reduced
In Cupertino, recent project cost $10 million in construction, $6 million in soft costs.

Clear support and funding, minimal or no environmental impact, consensus around purpose and need, make up a recipe for a more expedited review process. It’s important tonight to see if we have consensus around a clearly defined project.

A comment was made from someone who was involved in initial conception of project, which wanted to connect with the train station. G is aligned with the old railroad. CalTrans accommodated that alignment, and made adjustments on the freeway based on that. The person promised to share name of CalTrans contact.

- Mr. Grover commented that the perspective being shared was perhaps the majority perspective, but that there is also a perspective that wants connection to the bus and perhaps some other northern perspectives, so F may split that difference.

The Y property at the end of the G alignment is known to be contaminated. It’s known that anything that F lands on is environmentally clean. We don’t know about the strip between the Y property and the freeway. It could be mitigated, but it’s another consideration.

- Briefly showed process slides. If City should decide to go forward with the project, groundwork is being laid. A number of other things could be done early. It’s important to remember that if a review is not accepted later, you run some risks, which should be weighed.
- Triangle sheets were handed out for the audience to take notes.
- A question was asked about the earthquake safety of G. A: The highway is a thin crust on the top of the ground, and you can’t think of it as a stiff structure.

**Key considerations about type of structure**

- Geometry and foundation conditions are fundamental; what you’re spanning over and what you’re sitting on.
- Constructability
  - Unlike buildings, bridges go over something, and construction needs to drive design thinking
  - Recently spoke with project manager for Golden Gate Bridge, who finished Cupertino Bridge. Switching from concrete to steel made it affordable, and the process went very smoothly.
  - In this case, you’re not going to work over the freeway without closing one whole side of it, and detour that during the night.
- Community goals
  - What do you want?
  - What’s important to you?
  - Do you want it to be a landmark, or something that will just get us there?
  - Impacts on local environment (cut off here)
- Structure options
  - Pre-fab truss
  - Tied Arch – Berkeley
  - Arch
  - Cable-Stayed – Mary
  - Low-profile stressed ribbon – ATT
- Construction cost comparison
• Comments and Q & A
  o Is it possible to customize a pre-fab truss bridge?
    ▪ A: Not really
  o Are there examples of trusses here?
  o What is the cost per foot for the steel truss bridge?
  o For the bridge width, let’s go as wide as we can
    ▪ Small electric train/vehicle crossing
    ▪ Maximize the number of bridge users
    ▪ Minimize traffic
    ▪ Explore ideas for powering electric vehicle with solar energy
    ▪ Explore funding options
    ▪ Existing solar panel on JC grounds already
    ▪ Explore possibility of JC kicking in some money
  o What should the width be in order to accommodate bicycles, pedestrians, and vehicles?
  o I have a personal vehicle, called the “Zap,” which I would like to use on the bridge
  o The city is bisected by Highway 101 and we need access
  o Impacts on buildings
  o The concrete on the concrete box structure type would be a haven for graffiti artists
  o John Nemeth at SMART: because the rail is slanted westward, moving the station northward doesn’t make it closer to the mall or JC
  o Can you clarify whether both Alignments F & G can accommodate the 1:20 slope?
    ▪ A: Yes, both can do 1:20 slope. Caltrans would probably prefer Alignment F because of the shorter span. Because of that, there will need to be a compelling reason to select G. The advantage of F is that you get over the freeway quicker.
  o Because pedestrian bridges are typically narrow, it helps to have curvature because this stiffens them in the transverse direction.
## F. Crime Statistics

### SANTA ROSA CAMPUS

<table>
<thead>
<tr>
<th>Offense Type</th>
<th>Year</th>
<th>On-Campus</th>
<th>Non-Campus</th>
<th>Public Property</th>
<th>Local Police</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murder &amp; Non-negligent Manslaughter</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Negligent Manslaughter</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Forcible Sex Offenses</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Non Forcible Sex Offenses</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Robbery</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aggravated Assault</td>
<td>2004</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Burglary</td>
<td>2004</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Motor Vehicle Theft</td>
<td>2004</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Arson</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>**</td>
<td>1</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>37</td>
<td>1</td>
<td>3</td>
<td>14</td>
<td>55</td>
</tr>
</tbody>
</table>

** local agency unable to provide statistics
SANTA ROSA & PETALUMA CAMPUSES and PUBLIC SAFETY TRAINING CENTER

No hate crimes were reported in 2004, 2005, or 2006.

Santa Rosa Campus

<table>
<thead>
<tr>
<th>Special Category ARRESTS Liquor/Drugs/Weapons</th>
<th>Year</th>
<th>On Campus</th>
<th>Non-Campus</th>
<th>Public Property</th>
<th>Local Police</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquor Law Violations</td>
<td>2004</td>
<td>13</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Drug Violations</td>
<td>2004</td>
<td>4</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Weapons Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>38</td>
<td>0</td>
<td>34</td>
<td>5</td>
<td>77</td>
</tr>
</tbody>
</table>

Petaluma Campus

<table>
<thead>
<tr>
<th>Special Category ARRESTS Liquor/Drugs/Weapons</th>
<th>Year</th>
<th>On Campus</th>
<th>Non-Campus</th>
<th>Public Property</th>
<th>Local Police</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquor Law Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drug Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weapons Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

** local agency unable to provide statistics (Petaluma Campus & Public Safety Training Center)
### Public Safety Training Center

#### Special Category ARRESTS

<table>
<thead>
<tr>
<th>Liquor/Drugs/Weapons</th>
<th>Year</th>
<th>On Campus</th>
<th>Non-Campus</th>
<th>Public Property</th>
<th>Local Police</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquor Law Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drug Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Weapons Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Disciplinary Actions/Judicial referrals

<table>
<thead>
<tr>
<th>Liquor Law Violations</th>
<th>Year</th>
<th>On Campus</th>
<th>Non-Campus</th>
<th>Public Property</th>
<th>Local Police</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Drug Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weapons Violations</td>
<td>2004</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

#### Petaluma Campus

<table>
<thead>
<tr>
<th>Liquor Law Violations</th>
<th>Year</th>
<th>On Campus</th>
<th>Non-Campus</th>
<th>Public Property</th>
<th>Local Police</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drug Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weapons Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
## Disciplinary Actions/Judicial referrals

<table>
<thead>
<tr>
<th>Disciplinary Actions/ Judicial referrals</th>
<th>Year</th>
<th>On Campus</th>
<th>Non-Campus</th>
<th>Public Property</th>
<th>Local Police</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquor Law Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Drug Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weapons Violations</td>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### Daily Log Access

The District Police Department maintains a daily log of officer activity and calls for police service for the most recent 60-day period. The log is open for public inspection during normal business hours of 8:00 a.m. - 5:00 p.m., Monday – Friday. Log entries older than 60 days can be obtained by request within 2 business days. Additionally, the District Police include a log on our web site at [www.santarosa.edu/police](http://www.santarosa.edu/police) with summary information about crimes and reports taken by the District Police.

### Law Enforcement Authority

The District Police Department is a full-service, fully certified, police agency within the State of California staffed by sworn peace officers 24 hours a day, 7 days a week, every day of the year. The District Police Department is not a branch of any other law enforcement agency.

The Police Officers are vested with law enforcement powers pursuant to California Penal Code Section 830.32(a) and California Education Code Section 72330, have police authority throughout the state, and primary law enforcement jurisdiction for all crimes occurring on District properties. Police officers have full powers of arrest, enforce local, state and federal laws both on and off campus, and as full peace officers, their police authority includes concurrent law enforcement jurisdiction on adjacent streets and in the communities surrounding District properties. The District Police Department also complies with the Kristin Smart Campus Safety Act by maintaining formal operational agreements with law enforcement agencies sharing concurrent law enforcement jurisdiction to ensure prompt law enforcement response and collaboration in incidents requiring inter-agency cooperation.

Police Officers employed by the District meet all training requirements as mandated by the California Commission on Peace Officer Standards and Training and actually are mandated to have more training than county or municipal law enforcement officers. Each Police Officer has graduated from a regional police academy, completed a rigorous field training program, and must complete a probationary period. Additionally, each police officer is updated in training throughout the year to include firearms, defensive tactics, first aid/CPR, and legal updates.
G. Pedestrian & Bicycle Usage Statistics

Bicycle Use Survey 2003

Prepared by the City of Santa Rosa Bicycle and Pedestrian Advisory Committee, Departments of Transit and Parking in cooperation with Santa Rosa High School Math students, 2003. Recreated from original.

Tabulated answers listed in parenthesis:

- My home zip code is:
  - 95401 (33) 95403 (16) 95404 (29) 95405 (19) 95407 (23)
  - 95409 (9) Other zip codes were: 95472, 95493, 95492, 95448, 94951, 94931

- My age is:
  - Under 21 (1) 22-50 (103) Over 50 (40)

- I am:
  - Female (44) Male (100)

- I ride my bike:
  - More than 3 times per week (69) 1-2 times per week (35)
  - 2-3 times per month (39)

- Most of my trips are (one way):
  - Under 3 miles (42) 5-10 miles (58) Over 10 miles (39)

- I ride my bike mostly for:
  - Commuting (18) Fitness/Recreation (41) Both (78)

- I prefer to ride:
  - Shortest route (27) Safest route (bike paths or lanes) (107)

- If I had to choose one I would prefer:
  - Wider, smoother, cleaner streets (30) Bike lane and off-street paths (110)

- I mostly travel:
  - North/south (29) East/west (40) Both (70)

- When I ride I feel safer on streets with:
  - Parallel parking (63) Diagonal parking (16) Not an issue (61)

- Choose 3 routes that you use most often from the list on the back of this page. Write the numbers here that correspond to the routes. Highest count were:
  - Annadel (24) College (19) Joe Rodota (24) Santa Rosa Creek (24)
  - Stony Point (25)

- Comments included:
  - Bars would be better than bottles at energizer stations—bottles too heavy.
  - I have ridden my bike to work daily for 26 ½ years, sometimes 20 miles round trip (rider, over 50, prefers shortest route but would prefer bike lanes!)
  - Too many cars parked on the streets where there should be bike lanes posted with “Bike Lane, Emergency Parking Only.” Both parallel and diagonal parking are bad. Thanks for encouraging bicyclists.
**Bicycle Use Survey 2002**
Prepared by the City of Santa Rosa Bicycle and Pedestrian Advisory Committee, Departments of Transit and Parking 4/02. Number of responses for each answer noted in parathesis. Recreated from original.

- I consider myself a cyclist.
  - Yes (182)  No (60)
- I own and drive a car.
  - Yes (205)  No (36)
- My age is:
  - Under 16 years (4)  16-26 (32)  27-40 (71)  Over 40 (135)
- I ride my bike:
  - 2-3 times per month (53)  1-2 times per week (50)  More than 3 times per week (124)
- Most trips are about how long (one way)?
  - 1-5 mi. (109)  6-15 mi. (71)  Over 15 mi. (54)
- I ride my bike primarily for:
  - Transportation (103)  Fitness (124)  Concern for the environment (51)  Recreation (97)
  - Cost (20)  Other (23)
- I mostly ride
  - On city streets (shortest route) (124)  On streets with bike lanes (79)
  - On bike paths away from traffic (57)  Off road (36)  Other (30)
- I mostly ride to the following places
  - City/county agencies (31)  Shopping (54)  Work (104)  School (21)  Other (84)
- Cycling in Santa Rosa could be improved with:
  - Wider smoother streets (72)  More bike paths and lanes (170)  Other (30)
- I would cycle more if:
  - I had a safe place to park/leave my bike (55)  There was better coordination with buses (18)
  - I felt safe in traffic (127)  Other (54)
- Cycling in Santa Rosa would be safer with:
  - Better education of motorists (151)  Better enforcement of motorist violations (88)
  - Better education of cyclists (78)  Better enforcement of cyclist violations (43)
- I would attend a workshop on safe and legal cycling practices.
  - Yes (116)  No (97)
1. Project Information

<table>
<thead>
<tr>
<th>District</th>
<th>County</th>
<th>Route</th>
<th>PM</th>
<th>EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Sonoma</td>
<td>101</td>
<td>SON 21.2</td>
<td></td>
</tr>
</tbody>
</table>

Project Title: Santa Rosa U.S. Route 101 Bicycle and Pedestrian Bridge

<table>
<thead>
<tr>
<th>Project Manager:</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otto Bertoloero, City of Santa Rosa</td>
<td>(707) 543-3878</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Engineer:</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Grover</td>
<td>(510) 549-9258</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Office Chief/Manager:</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEAR Preparer:</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael K. Kay, PBS&amp;J</td>
<td>(415) 362-1500</td>
</tr>
</tbody>
</table>

2. Project Description

Purpose and Need

The US Route 101 freeway (101) has been a major transportation asset to the City of Santa Rosa since the construction of the freeway in the late 1950s. However, because the freeway bisects the City, 101 limits east/west travel options, particularly for cyclists and pedestrians in the area north of College Avenue near the Santa Rosa Junior College (SRJC) and Santa Rosa High School (SRHS) campuses. In this area there are no exclusive bicycle/pedestrian crossings of 101 and the two available roadway crossings, one at College Avenue and one at Steele Lane, present challenges to cyclists and pedestrians because the crossings are spaced one mile apart, have high traffic volumes, and have multiple intersections with freeway ramps and major north-south streets.

On the east side of 101, SRJC is the second largest employer in the City of Santa Rosa. Because the majority of staff and students arrive by automobile, SRJC generates high volumes of traffic. Despite the recent construction of a large parking garage on the SRJC campus, the streets near SRJC continue to experience traffic congestion and insufficient parking. Recent plans project that this area is expected to draw increasing numbers of pedestrians and cyclists, and specific infrastructure improvements have been proposed to accommodate them.

On the west side of 101 between College Avenue and Steele Lane, various development trends combine to increase the need for local roadway improvements and for safe alternatives for east-west bicycle and pedestrian travel across Highway 101. These include the addition of between 500 and 1,000 housing units...
within 1/4 mile of 101, an east-west bicycle boulevard at Jennings Avenue, increasingly pedestrian oriented retail at the Coddingtown Mall, a north-south bicycle/pedestrian pathway along the proposed Sonoma Marin Area Rail Transit (SMART) line, and a proposed SMART station near Jennings Avenue.

The purpose of the project is to close a gap in the local and regional transportation network for bicyclists and pedestrians. The project would also help improve safety for bicyclists and pedestrians, support revitalization of the area west of Highway 101, help mitigate pressures on the existing automobile infrastructure on the east side of 101 near the SRJC, provide quality of life benefits for the general Santa Rosa population in the form of a reduction in vehicle miles traveled (VMT) and new recreational opportunities; and improve travel opportunities including safer routes for commuters, students, and low income and other disadvantaged residents.

**Project Purpose.** The project would close a gap in the Santa Rosa transportation network through the following actions:

- Offering a safer and more enjoyable alternative for bicyclists and pedestrians crossing 101 in the vicinity of SRJC compared to existing roadway crossings.

- Offering more direct connections for bicycles and pedestrians crossing 101 to important destinations east and west of the freeway including SMART, SRJC, SRHS, the Jennings Ave east-west Bicycle Boulevard, Coddingtown Mall, the SMART bicycle/pedestrian trail pathway, and housing developments along Range Avenue.

**Project Need.** The needs for the project can be discerned from negative characteristics that exist in the project area and from expected changes that significantly expand existing needs:

- Highway 101 creates a barrier to east-west travel and neighborhood coherence.

- Existing east-west roadways at Steele Lane and College Avenue are insufficient because a) people are concerned for their safety when crossing the multiple existing arterial intersections and un-signalized on and off ramps near Highway 101, and b) the one mile distance between existing crossings results in trip lengths exceeding a comfortable range for pedestrians and many cyclists.

- Traffic congestion and parking shortages in the SRJC area persist despite the recent addition of a 1,100 space parking garage on the SRJC campus.

- A new light rail transit station is planned for the west side of 101 near Jennings Avenue. This station is projected to serve over 1,300 people each day. Of those 1,300, 500 are projected to arrive at the station by means other than an automobile.
• Proposed high density housing in the project area west of 101 would increase residential population in the immediate project area. Recent housing developments in the project area are reserved for low-income and elderly residents; populations that rely more heavily on alternative transportation modes.

• A number of alternative transportation improvements are slated for the project area including the Jennings Bike Boulevard, the SMART light rail station, pedestrian-oriented improvements on Mendocino Avenue, bicycle and pedestrian improvements on the SRJC campus, and a multi-use pathway along the proposed light rail route.

Description of work

Alternatives

Two build alternatives are under consideration. Both alternatives are located at the southernmost project location considered in a feasibility study prepared by Steven Grover Associates (SGA) for the project and are differentiated primarily by their western approach alignments. On the east side of 101 both alternatives connect to City of Santa Rosa right-of-way at the intersection of Pacific Avenue and Mendocino Avenue. From that point they follow existing sidewalks and an existing Class 3 Bikeway along Bear Cub Way on the SRJC campus with eastern ramp touchdowns on Bear Cub Way near the SRJC Call Child Development Center. Both alternatives would not require structural supports within the Caltrans right-of-way, but would require some relatively minor above and below ground utility relocations on each side of 101. Both alternatives would displace approximately 10 parking spaces within the Bear Cub Way parking lot.

The project limits for the proposed bicycle and pedestrian bridge extend from the Bear Cub Way parking lot on the SRJC campus east of 101 to an undeveloped field bounded by Jennings Avenue, Range Avenue, and Frances Street west of 101. At this time, connections to the bicycle and pedestrian bridge from the west are undefined. Therefore, the project limits west of 101 encompass the entire undeveloped field. Connections to the bicycle and pedestrian bridge from the east would be constructed in the Bear Cub Way parking lot.

Both of the build alternatives are further described below:

Alternative 1. Alternative 1 would cross 101 from Bear Cub Way on the east to just north of Foley Street on the west (see Figure #). The eastern approach ramp would pass just south of Lounibos Center on the SRJC campus and span the Bear Cub Way roadway connection to Armory Drive. Structural supports on the east side for the bridge and ramps would be located largely within existing parking lot medians and would avoid impacting existing mature trees at the intersection of Armory Drive and Bear Cub Way. Alternative 1 would then cross both frontage roads (Armory Drive and Cleveland Avenue) and the Caltrans right-of-way with a 235-foot main span perpendicular to the 101 centerline. Alternative 1 would require relocating an existing freeway sign. The west main span structural support would be on the west edge of Cleveland Avenue between a one-story building on the north (currently used as an Enterprise Rent-a-Car), and a two-story building center.
on the south (currently used as a music therapy center). The west side span and ramp structure would span the existing rental car parking lot, retaining all existing parking, and then return to grade in the Finali family property which is currently an open field, but is zoned for high density housing. Alternative 1 would then follow a currently unspecified alignment to join either Jennings Avenue or Frances Avenue.

*Alternative 2.* Alternative 2 would also cross 101 from Bear Cub Way on the east but would follow a former railroad right-of-way to a point south of Foley Street on the west (see Figure #). The eastern approach ramp would cross the diagonal central axis of Bear Cub Way. Structural supports on the east side for the bridge and ramp would be located within the existing Bear Cub Way parking lot and would avoid impacting existing mature trees at the intersection of Armory Drive and Bear Cub Way. Alternative 2 would then cross both frontage roads (Armory Drive and Cleveland Avenue) and the Caltrans right-of-way with a 290-foot main span skewed with respect to the 101 centerline. The west main span structural support would be on the west edge of Cleveland Avenue between a one-story building on the north (currently used and owned by a restaurant supply wholesale business), and an industrial yard on the south (currently used by a specialty gas company). The west side span and ramp structure would span the existing restaurant supply business parking lot, retaining all existing parking, and then return to grade in a narrow lot which is currently an open field, but is zoned for ___. Alternative 2 would then continue straight along the former railroad right-of-way to join Frances Avenue at its intersection with Briggs Avenue in front of the proposed SMART light rail station.

### 3. Anticipated Environmental Approval

<table>
<thead>
<tr>
<th>CEQA</th>
<th>NEPA</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Environmental Determination</strong></td>
<td></td>
</tr>
<tr>
<td>Statutory Exemption</td>
<td>[ ]</td>
</tr>
<tr>
<td>Categorical Exemption</td>
<td>Categorical Exclusion [x]</td>
</tr>
<tr>
<td><strong>Environmental Document</strong></td>
<td></td>
</tr>
<tr>
<td>Initial Study or Focused Initial Study with Negative Declaration or Mitigated ND</td>
<td>Environmental Assessment with Finding of No Significant Impact [x]</td>
</tr>
<tr>
<td>Environmental Impact Report</td>
<td>Environmental Impact Statement [ ]</td>
</tr>
<tr>
<td>CEQA Lead Agency (if determined):</td>
<td>City of Santa Rosa</td>
</tr>
<tr>
<td>Estimated length of time (months) to obtain environmental approval:</td>
<td>12</td>
</tr>
<tr>
<td>Estimated person hours to complete identified tasks:</td>
<td></td>
</tr>
</tbody>
</table>
4. Special Environmental Considerations

Based on available information regarding the build alternatives and the environmental resources in the project area, neither of the build alternatives would involve special considerations beyond typical compliance with environmental regulations.

5. Anticipated Environmental Commitments

Mitigation for temporary impacts to biological resources would be required during construction of the proposed project. An Initial Site Assessment (ISA) will be prepared for the project during the Project Approval/Environmental Document (PA/ED) phase of the project. Construction noise and vibration would need to be mitigated appropriately (i.e., restrictions on construction hours, use of low-impact pile drivers [if needed], etc.) to avoid impacts on nearby residences and students at the SRJC. Construction stormwater pollution prevention permits must be granted prior to construction activities, and a post-construction stormwater management plan would be required to meet State NPDES standards for stormwater quality. The effects of construction air pollutant emissions, especially PM$_{10}$ from construction activity and equipment, would need to be mitigated appropriately (e.g., dust controls, low-emission construction equipment, etc.) to avoid impacts on nearby residences and daycare center. Surveys for white-tailed kite, other raptors and migratory birds would be required prior to the issuance of a grading permit.

6. Permits and Approvals

No wetlands or waters of the U.S. would be affected by the project, so there would be no need for Clean Water Act (CWA) 404 Wetland Fill Permit, or CWA 401 Water Quality Certification required. No streams, rivers or lakes occur in or near the project area, so no CDFG Section 1600-1616 Streambed Alteration Agreements would be required. It is unlikely that any federally listed threatened or endangered species occur in the project area, so no Section 7 or 10 Incidental Take permits would be required. Depending on the results of surveys for special-status plants, raptors and migratory birds, demonstration of avoidance or approval from CDFG for take of these species, should they be found there, may be required.

7. Level of Effort: Risks and Assumptions

The study area is sensitive for prehistoric and historic-era archaeological resources. As with prehistoric archaeological resources, historic archaeological resources may be located below the current ground surface. However, studies conducted for other projects in the vicinity of the proposed project failed to locate archaeological resources. Therefore, the risk is low.

A query of the CNDDB, and the USFWS Online Species Database identified occurrences of 18 special-status plant and animal species which would potentially be present in the project area. However, based on the degree
of historic disturbance in the project area, it is unlikely that any of these species are present. Therefore, the risk associated with impacts to special-status plant and animal species is low.

8. **PEAR Technical Summaries**

8.1 **Land Use:** The proposed project would span 101 and return to grade within a SRJC parking area on the east side of 101 and an open field on the west side of 101. The area on the west side of 101 is sparsely developed and is zoned for high, medium, and low density residential. Adjacent to the eastern touchdown area within the SRJC parking lot is the campus daycare center. SRJC recreation areas exist within the campus, but are not immediately adjacent to the touchdown area and would not be affected by the project. The project would be compatible with existing and proposed development by providing a bicycle-pedestrian link between residential areas west of 101 and institutional and commercial areas east of 101. No Section 4(f) resources would be affected by the project and the preparation of a Section 4(f) Resources Evaluation for the project would not be required.

8.2 **Growth:** The project would not induce population growth in the area because it does not include major infrastructure improvements (such as utilities or roadways) in an undeveloped area. No formal review of growth-inducing impacts would be required.

8.3 **Farmlands/Timberlands:** The project would be constructed in an urban area; there are no farmlands or timberlands within the project limits or the project vicinity.

8.4 **Community Impacts:** Under the proposed alternatives, no residences would be impacted and the relocation of area residents would not be necessary. The project has the potential to relocate utilities within the project area and may affect the parking lots of businesses west of 101. Although no businesses or homes would be relocated, the project may affect existing rights-of-way. The project would not affect the economic structure of the community. A Community Impact Assessment (CIA) would not be required to analyze socio-economic issues.

8.5 **Visual/Aesthetics:** The project area within and along Highway 101 is not within a State-designated scenic highway. Therefore, the project would not obstruct views of State importance. However, the Santa Rosa General Plan has designated 101 a scenic road. Views from travelers on Highway 101 could be affected by the construction of the proposed bridge. A Visual Impact Assessment would likely be required to analyze visual impacts of the proposed bridge. This assessment would include a discussion of potential project effects, visual simulations, and appropriate mitigation.

8.6 **Cultural Resources:** This discussion of Cultural Resource is based on a review of the Final Environmental Assessment/Environmental Impact Report (EA/EIR) prepared for the Route 101 HOV
Widening Project. ¹ The proposed Santa Rosa U.S. Route 101 Bicycle and Pedestrian Bridge project would be constructed within the limits of the Route 101 HOV Widening project.

Archaeological Resources. Archaeological research conducted in support of Route 101 Widening project did not identify any prehistoric archaeological sites within the study area; however one site (CA-SON-860/H) is located nearby. In addition, the EA/EIR notes that prehistoric cultural materials were identified during construction monitoring of the 3rd Street underpass under Santa Rosa Plaza in the late 1970s. Finally, the ethnographic Pomo Village site of Hukabetawi was reported inside the study area. Prehistoric archaeological resources may be located beneath the current ground surface.

European settlers came to the area in the early 1800s and studies conducted during the Route 101 HOV widening project indicate that the area south of the Santa Rosa U.S. Route 101 Bicycle and Pedestrian Bridge project study area is sensitive for historic-era archaeological resources.² As with prehistoric archaeological resources, historic archaeological resources may be located below the current ground surface.

Archaeological resources may be encountered during the excavation related to span supports for the proposed project. Alternative 1 may impact archaeological resources near the intersections of Armory Drive and Bear Cub Way to the east, and Cleveland Avenue and north of Foley Street to the west. Alternative 2 may impact archaeological resources near the intersection of Armory Drive and Bear Cub Way to the east, and Cleveland Avenue and south of Foley Street to the west. In addition, Alternative 2 would impact the former railroad right-of-way, which may be an historic archaeological site. The railroad right-of-way may require an evaluation for its eligibility for listing on the National Register of Historic Places.

Architectural Resources. No buildings were identified during the Route 101 HOV Widening EA/EIR as eligible for the National Register of Historic Places (NRHP) in the Santa Rosa U.S. Route 101 Bicycle and Pedestrian Bridge project study area; however, the Area of Potential Effect (APE) for the Route 101 project did not include the entire project area for the proposed pedestrian overcrossing. Under the proposed project alternatives no buildings would be demolished; however, the setting of the area would change with the construction of the pedestrian overcrossing in either of the proposed locations.

A cultural resources study, which includes archaeological and architectural history, would be required to analyze these issues. The cultural resources investigation would be conducted in accordance with the procedures identified in the Caltrans Environmental Handbook, Volume 2: Cultural Resources and would include a confidential records search of files on record at the Northwest Information

² Ibid.
Center; research at the Sonoma County Assessor’s Office to determine both history and age of any buildings in the APE; consultation with Native Americans, historical societies, and other interested parties; intensive archaeological and architectural history surveys of the APE; and technical reports which document the findings.

8.7 Hydrology and Floodplain: The project site is in the Santa Rosa Plain groundwater subbasin, which contains numerous complex and discontinuous water-bearing formations. The site is partly built environment and partly grassland. It is nearly flat, sloping down very gently to the south and southwest with an average gradient of less than one percent. Runoff flows to the City’s storm-drainage system through existing ditches and sub-surface drain pipes, discharging to the Santa Rosa River. Recharge is limited by the relatively high clay content of the soils. The project site is not in a 100 year flood zone.

Because construction would involve grading of an area that is larger than one acre, the project would be subject to the conditions of the General Construction Activity Nation Pollutant Discharge Elimination System (NPDES) permit from the Regional Water Quality Control Board (RWQCB), which requires the development of a Storm Water Pollution Prevention Plan (SWPPP). The SWPPP is required to identify the sources of sediment and other pollutants on-site, and to ensure the reduction of sediment and other pollutants in discharged stormwater. A monitoring program is required to aid the implementation of, and assure compliance with, the SWPPP. The permit requirements of the RWQCB must be satisfied prior to project construction. Policies of the City of Santa Rosa and the Sonoma County Water Agency require the project to maintain pre-development runoff rates. To reduce the possibility that construction activities would create a risk of contaminating groundwater or surface water, or cause exposure of pre-existing contaminated groundwater, the RWQCB would require preparation and implementation of a Construction Hazardous Materials Management Plan that would include procedures for the handling of chemical releases, fuel spills, and the potential spread of contaminant plumes.

8.8 Water Quality and Storm Water Runoff: There are no known constraints to the project alternatives regarding water quality that would severely limit or preclude the project. However, some considerations for construction and operation of the project alternative sites need to be addressed. In particular, construction stormwater pollution prevention permits must be granted prior to construction activities, and a post-construction stormwater management plan would be required to meet State NPDES standards for stormwater quality.

---


The only agency coordination required for the project would be through the North Coast Regional Water Quality Control Board (RWQCB) and its approval of the existing Caltrans National Pollutant Discharge Elimination System (NPDES) Permit, Statewide Storm Water Permit and Waste Discharge Requirements for the State of California, Department of Transportation (Order No. 99-06-DWQ, NPDES No. CAS000003) and the NPDES General Permit, Waste Discharge Requirements for Discharges of Storm Water Runoff Associated with Construction Activity” (Order No.99-08-DWQ, NPDES No. CAS000002).

8.9 Geology, Soils, Seismicity, and Topography: A Preliminary Geotechnical Investigation was prepared in 2007 for a multifamily residential development at 1020-1060 Jennings Avenue. The project site is on the Santa Rosa alluvial plain in the Coast Ranges geomorphic province. The ranges and intervening valleys trend northwest, more or less parallel to the offshore segment of the San Andreas fault, about 25 miles southwest. The sediments at the project site consist of two units of older Quaternary alluvium. The upper unit is a 2- to 3-foot-thick layer of loose, soft to stiff, organic clayey silt and silty clay. The lower unit is at least 8 to 13 feet of predominantly stiff to very stiff silty clay and clay containing 2- to 3-foot-thick discontinuous layers of medium dense gravel. Groundwater is between 9 and 12 feet below the ground surface.6

The geologic units are expansive, compressible, and susceptible to liquefaction below the water table. The nearest known active fault (in an Alquist-Priolo Earthquake Fault Zone) is the Rodgers Creek fault about 2.2 miles northeast, which is considered capable of generating a M 7.0 earthquake.7

The project would be subject to such regulations as the Caltrans Bridge Design Specifications,8 Bridge Memo to Designers,9 Bridge Design Practice Manual,10 and Bridge Design Aids Manual,11 which provide state-of-the-art information to address geo-seismic issues that would affect the design of the POC. The performance criteria include functional and safety evaluations of ground motion,

---


level of service to be attained following a major earthquake, and the level of damage the structure
must be designed to withstand. Adherence to the standards of protection is mandatory and would
reduce the risk of injury or death from geologic forces to the maximum extent technically practicable.

8.10 Paleontology: The sediments at the project site consist of two units of older Quaternary alluvium. The upper unit is a two- to three-foot-thick layer of loose, soft to stiff, organic clayey silt and silty clay. The lower unit is at least eight to 13 feet of predominantly stiff to very stiff silty clay and clay containing two- to three-foot-thick discontinuous layers of medium dense gravel. At least the upper unit has been disturbed by rural and urban activity. Fossils have been found in Quaternary alluvium in excavations for roads and housing developments in Santa Rosa, including remains of Rancholabrean age (middle to late Pleistocene) vertebrates.

Older Quaternary alluvial deposits throughout Sonoma County are Low to Moderately Sensitive paleontologically. Because fossils in the alluvium often are the result of re-deposition of sediment derived from upstream rock formations containing animal and/or plant remains and may have traveled great distances prior to deposition, their value as paleontological resources may be limited. Given the extent and intensity of urban development in the vicinity of the project, it is reasonable to assume the near-subsurface materials have been altered to varying degrees and unknown depths.

Pre-construction paleontological subsurface surveys probably are not warranted, but the construction site manager should be alerted to the possibility of such resources being discovered. In the event fossils are discovered, professional standards for assessment and mitigation of adverse impacts on paleontological resources have been established by Caltrans incorporating the Society of Vertebrate Paleontology guidelines, which afford protection of the resources in accordance with federal, state, and local laws and regulations.

8.11 Hazardous Waste/Materials: An Initial Site Assessment (ISA) will be prepared for the project during the Project Approval/Environmental Document (PA/ED) phase of the project. Current and past industrial uses adjacent to the western portions of the project area may contain underground storage tanks. The ISA will determine what hazardous materials, if any, are present in the project vicinity.

---


14 Society of Vertebrate Paleontologists, Conformable Impact Mitigation Guidelines Committee, Assessment and Mitigation of Adverse Impacts to Nonrenewable Paleontologic Resources: Standard Guidelines, 2007

Further hazardous waste investigation, including a Preliminary Site Investigation (PSI), may be required prior to the start of construction.

8.12 Air Quality: Sensitive receptors are present in the form of residences along Cleveland Avenue and Jennings Avenue, and children at the adjacent daycare center on the SRJC campus. The effects of construction air pollutant emissions, especially PM$_{10}$ from construction activity and equipment, would need to be mitigated appropriately (e.g., dust controls, low-emission construction equipment, etc.) to avoid impacts on nearby residences and daycare center.

8.13 Noise and Vibration: Existing ambient noise in the project site vicinity is predominantly due to motor vehicle traffic. Vehicles traveling on 101 have the largest influence on noise levels in the area. Noise would be generated during project construction. Construction noise and vibration would need to be mitigated appropriately (i.e., restrictions on construction hours, use of low-impact pile drivers [if needed], etc.) to avoid impacts on nearby residences and students at the SRJC.

8.14 Energy and Climate Change: Due to the type and scale of the project, an energy technical report would not be required. The project would result in a minor increase in greenhouse gas emissions during construction. Operation of the project would not increase vehicle-miles traveled (VMTs) in the region because the project would only be opened for non-motorized use. A qualitative analysis would be required during the PA/ED phase.

8.15 Biological Environment: The evaluation of biological resources in the project area was conducted through examination of high quality aerial photographs, on ground photos, and review of previous environmental documentation that included a wetland delineation and Biological Assessment$^{16}$ for the undeveloped property west of Highway 101. No biological site visit was conducted for the preparation of this PEAR. Lists of special-status species was obtained from the California Department of Fish and Game’s (CDFG) Natural Diversity Database (CNDDB)$^{17}$ and the U.S. Fish and Wildlife Service’s (USFWS) Online Species Database$^{18}$ (http://sacramento.fws.gov/es/spp_lists/auto_list_form.cfm.) Neither the USFWS, nor the CDFG has been contacted directly regarding this project.

The project area consists of a combination of urban development, and agricultural land. Areas east of 101 are occupied entirely by urban development, including roadways and commercial development. No biological resources occur in this area. Areas west of 101 are primarily occupied by inactive agricultural land with some urban development adjacent to the freeway. Agricultural land includes a

$^{16}$ Biological Assessment Parcel Nos 041-161-004 & -021, Santa Rosa, Sonoma County, California, LSA Associates, January 2007, Prepared for the Finali Family Partnership I, LLP. Much of the western portion of the project area is covered under this biological assessment.

$^{17}$ California Natural Diversity Database, Biogeographic Data Branch, Department of Fish and Game, Version Date August 01, 2009.

former walnut orchard and horse pasture. Grassland vegetation in this area consists of non-native annual grasses and forbs, which appears to be mowed on a periodic basis. A series of seasonal wetlands totaling approximately 0.13 acre occur in the western portion of the project area, approximately 200 feet from the proposed alternative alignments along the edge of the horse pasture. No wetlands occur within or immediately adjacent to the proposed pedestrian path alignments.

A query of the CNDDB, and the USFWS Online Species Database identified occurrences of 18 special-status plants, three special-status invertebrates, three special-status fish, three special status amphibians, one special-status reptile, and two special-status birds, which would potentially be present in the project area. An evaluation of the likelihood of these species occurring in the project area identified that there is potential habitat for eight of the identified special status plants; however, based on the degree of historic disturbance in the project area, it is unlikely that any of these species are present. None of these species were observed during botanical surveys conducted for the Finali property in 2004 and 2006.

The small shallow seasonal pools on the western portion of the Finali property could provide suitable habitat for one of the special-status invertebrates, California linderiella, but no surveys have been conducted for this species to date. The location of these pools is more than 200 feet away from where any of the proposed alternative pedestrian paths occur. Therefore, even if the species is present; it is unlikely to be affected by the project.

Trees present in the project area could provide suitable nesting sites for white-tailed kite (and other raptors and migratory birds), and adjacent grassland could provide suitable foraging habitat for this species. White-tailed kite is known to occur in areas of suitable habitat in the region, but has not been observed in the project area to date. Removal of trees during construction of the proposed pedestrian path connecting the western end of the POC to existing surface streets could result in the loss of nesting habitat for white-tailed kite or other raptors and migratory birds. Removal of adjacent grassland could result in the loss of foraging habitat for these species.

No wetlands or waters of the U.S. would be affected by the project, so there would be no need for Clean Water Act (CWA) 404 Wetland Fill Permit, or CWA 401 Water Quality Certification required. No streams, rivers or lakes occur in or near the project area, so no CDFG Section 1600-1616 Streambed Alteration Agreements would be required. It is unlikely that any federally listed threatened or endangered species occur in the project area, so no Section 7 or 10 Incidental Take permits would be required. Depending on the results of surveys for special-status plants, raptors and migratory birds, demonstration of avoidance, or approval from CDFG for take of these species, should they be found there, may be required.

A Natural Environment Study – Minimal Impact would be prepared for this project. Botanical surveys were conducted in 2004 and 2006 that covered the majority of the undeveloped land in the
project area. However, the CDFG and USFWS consider such surveys to be good for two years. These surveys would therefore need to be updated prior to the issuance of grading permits, and the survey area needs to be expanded to include all undeveloped property in the project area. Surveys need to be conducted during the blooming period for the target plant species, and multiple visits may be required to cover the bloom periods of all the target species.

Surveys for white-tailed kite, other raptors and migratory birds would be required prior to the issuance of a grading permit. Surveys need to be conducted during the nesting season (generally mid-March through early August). If nesting white-tailed kites, other raptors or migratory birds are found in the project area, an avoidance plan must be developed which would include monitoring of nest sites by qualified biologists to ensure that all young have fledged and left the nest prior to disturbance within 250 feet.

8.16 Cumulative Impacts: As described above, the proposed alternatives would have minimal impacts on resources in the project area. Compliance with regulations and standard mitigation measures would avoid and minimize all potential impacts. Cumulative impacts related to the alternatives are not anticipated.

8.17 Context Sensitive Solutions: Two special meetings of the City Council, Bicycle and Pedestrian Advisory Board, and Planning Commission were held where Santa Rosa residents were invited to share their thoughts relating to a proposed Highway 101 crossing. These meetings were noticed on the city public works website, newspaper, and approximately 2,000 invitations were mailed out to project area residents.

The Santa Rosa community has expressed a strong desire to complete a project expeditiously, but without compromising safety features or the ability of the project to accommodate and encourage bicycling and walking for many years to come. An overwhelming majority of attendees at the two public meetings felt that a "crossing is a key investment for health safety and economic vitality of the community."

A total of seven location and alignment alternatives were presented at the public meetings. Based on the attendees' feedback and on careful analysis of geometric feasibility and constraints, consideration was narrowed to the two southern alignments which are the build alternatives described in Section 2.

9. Summary Statement for PSR or PSR-PDS

For both alternatives key environmental issues are limited to potential construction-related impacts to biological resources, air quality, noise, water quality, and hazardous materials. In addition, the alternatives may affect unknown cultural resources. Potential constraints are limited to seasonal work restrictions to avoid potential biological impacts and limits on nighttime construction to avoid impacts to noise sensitive receptors.
10. Disclaimer

This Preliminary Environmental Analysis Report (PEAR) provides information to support programming of the proposed project. It is not an environmental determination or document. Preliminary analysis, determinations, and estimates of mitigation costs are based on the project description provided in the Project Study Report (PSR). The estimates and conclusions in the PEAR are approximate and are based on cursory analyses of probable effects. A reevaluation of the PEAR will be needed for changes in project scope or alternatives, or in environmental laws, regulations, or guidelines.
11. List of Preparers

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Resources specialist</td>
<td>Amber Grady, PBS&amp;J</td>
<td>08/10/09</td>
</tr>
<tr>
<td>Biologist</td>
<td>Sam Bacchini, Senior Scientist – Herpetologist, PBS&amp;J</td>
<td>08/10/09</td>
</tr>
<tr>
<td>Community Impacts specialist</td>
<td>Rachel Galaraga, PBS&amp;J</td>
<td>08/10/09</td>
</tr>
<tr>
<td>Noise and Vibration specialist</td>
<td>Natalie Irwin, PBS&amp;J</td>
<td>10/2/09</td>
</tr>
<tr>
<td>Air Quality specialist</td>
<td>Natalie Irwin, PBS&amp;J</td>
<td>10/2/09</td>
</tr>
<tr>
<td>Paleontology specialist/liaison</td>
<td>George Burwasser, PBS&amp;J</td>
<td>10/21/09</td>
</tr>
<tr>
<td>Water Quality specialist</td>
<td>George Burwasser, PBS&amp;J</td>
<td>10/21/09</td>
</tr>
<tr>
<td>Hydrology and Floodplain specialist</td>
<td>George Burwasser, PBS&amp;J</td>
<td>10/21/09</td>
</tr>
<tr>
<td>Hazardous Waste/Materials specialist</td>
<td>Natalie Irwin, PBS&amp;J</td>
<td>08/10/09</td>
</tr>
<tr>
<td>Visual/Aesthetics specialist</td>
<td>Rachel Galaraga, PBS&amp;J</td>
<td>08/10/09</td>
</tr>
<tr>
<td>Energy and Climate Change specialist</td>
<td>Natalie Irwin, PBS&amp;J</td>
<td>10/2/09</td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td>10/21/09</td>
</tr>
<tr>
<td>PEAR Preparer (Name and Title)</td>
<td>Michael Kay, Project Manager, PBS&amp;J</td>
<td>10/21/09</td>
</tr>
</tbody>
</table>
12. Review and Approval

I confirm that environmental cost, scope, and schedule have been satisfactorily completed and that the PEAR meets all Caltrans requirements. Also, if the project is scoped as an EA or EIS, I verify that the HQ DEA Coordinator has concurred in the Class of Action.

____________________________________  Date: _____________
Environmental Branch Chief

____________________________________  Date: _____________
Project Manager

REQUIRED ATTACHMENTS:

Attachment A: PEAR Environmental Studies Checklist
Attachment B: Estimated Resources by WBS Code
Attachment C: Schedule (Gantt Chart)
Attachment D: PEAR Environmental Commitments Cost Estimate (Standard PSR)
I. Sample Cooperative Agreement

COOPERATIVE AGREEMENT

THIS AGREEMENT, ENTERED INTO EFFECTIVE ON ______________, 2006, is between the STATE OF CALIFORNIA, acting by and through its Department of Transportation, referred to herein as "STATE", and the CITY OF CUPERTINO, a body politic and a municipal corporation of the State of California, referred to herein as "CITY".

RECITALS

1. STATE and CITY, pursuant to Streets and Highways Code sections 114 and 130, are authorized to enter into a Cooperative Agreement for improvements to State Highways within CITY's jurisdiction.

2. CITY intends to construct a Pedestrian Overcrossing (Bicycle Bridge) on Route 280 at 0.46 km east of Route 85 and 280 Separation in the City of Cupertino, referred to herein as "PROJECT".

3. CITY is willing to fund one hundred percent (100%) of all capital outlay and support costs, except that the costs of STATE's quality assurance will be borne by STATE. The PROJECT cost estimate is shown on Exhibit A, attached hereto and made a part of this Agreement.

4. The parties agree that CITY will prepare the contract documents and advertise, award, and administer the construction contract for PROJECT.

5. Project development responsibilities for PROJECT were covered in a prior Cooperative Agreement executed by STATE and CITY on December 23, 2005, (District Agreement No. 4-2007)

6. The parties now define hereinbelow the terms and conditions under which PROJECT is to be owned, constructed, financed, operated, and maintained.

SECTION I

CITY AGREES:

1. To pay one hundred percent (100%) of the actual construction capital and support costs required for satisfactory completion of PROJECT, including, but not limited to, State-furnished material.

2. To not use STATE's funds for any PROJECT capital and support costs.
3. To submit a written request for any "State-furnished material" identified in the PROJECT plans, specifications, and estimates (PS&E) a minimum of forty-five (45) days in advance of the need for such materials. To then pay STATE, within fifteen (15) days of receipt of STATE's billing, the actual cost invoiced for the requested "State-furnished material." CITY may take delivery of the "State-furnished material" after STATE's receipt of CITY's payment and at the location directed by STATE.

4. To advertise, award, and administer the construction contract for PROJECT in accordance with requirements of the Local Agency Public Construction Act and the California Labor Code, including its prevailing wage provisions. Workers employed in the performance of work contracted for by CITY, and/or performed under encroachment permit, are covered by provisions of the Labor Code in the same manner as are workers employed by STATE's contractors.

5. Construction by CITY of those portions of PROJECT which lie within the State Highway right of way shall not commence until CITY's contract plans involving such work, the utility relocation plans, and the right of way certification have been reviewed and accepted by STATE and encroachment permits have been issued to CITY and CITY's contractor.

6. CITY's construction contractor shall maintain in force, until completion and acceptance of the PROJECT construction contract, a policy of Contractual Liability Insurance, including coverage of Bodily Injury Liability and Property Damage Liability, that complies with all coverage requirements with Section 7-1.12 of STATE's then effective Standard Specifications. Such policy shall contain an additional insured endorsement naming STATE and its officers, agents, and employees as additional insureds. This insurance coverage shall be evidenced by a Certificate of Insurance in a form satisfactory to STATE which shall be delivered to STATE before the issuance of an encroachment permit to CITY's construction contractor.

7. To require the construction contractor to furnish both a payment and a performance bond naming CITY as obligee with both bonds complying with the requirements set forth in Section 3-1.02 of STATE's current Standard Specifications prior to performing any PROJECT construction work. CITY shall defend, indemnify, and hold harmless STATE and its officers, agents, and employees from all claims by stop notice claimants related to the construction of PROJECT.

8. To have PROJECT constructed by contract to the satisfaction of and subject to STATE's acceptance in accordance with the STATE accepted PROJECT PS&E (contract plans).

9. Contract administration procedures shall conform to STATE's Construction Manual, Local Assistance Procedures Manual (if Federal funds are used), and the PROJECT encroachment permits.

10. Construction within the existing or ultimate State Highway right of way shall comply with STATE's Standard Specifications, the PROJECT Special Provisions, and STATE's Construction Manual.

11. If any existing public and/or private utility facilities conflict with the construction of PROJECT or violate STATE's encroachment policy, CITY shall make all necessary arrangements with the owners of such facilities for their protection, relocation, or removal in accordance with STATE's policy and procedure for those facilities located within the limits of the State Highway and in accordance with CITY's policy for those facilities located outside the State Highway. The cost of protection, relocation, or removal inside STATE's right of way shall be apportioned between the utility owners and CITY in accordance with STATE's policy and procedure. CITY shall require any utility owner performing relocation
work in the State Highway right of way to obtain an encroachment permit from STATE prior to the performance of said relocation work. The requirements of the most current version of STATE's "Policy on High and Low Risk Underground Facilities within Highway Rights of Way" shall be fully complied with. Any relocated or new facilities shall be correctly shown and identified with any unmodified facilities on the "As-Built" plans.

12. All survey work shall conform to the methods, procedures, and requirements of STATE's Surveys Manual and STATE's Staking Information Booklet.

13. PROJECT material testing and quality control shall conform to STATE's Construction Manual and STATE's California Test Methods, and shall be performed, at CITY's expense, by a material-tester certified by STATE.

14. PROJECT specialty testing, asphalt and concrete plant certifications shall be performed by STATE as part of quality assurance. STATE shall perform source inspection and testing as outlined in the Construction Manual. CITY shall reimburse STATE for support costs incurred for source inspection and testing performed by STATE.

15. To deposit with STATE within twenty-five (25) days of issuance of encroachment permit for PROJECT construction, the amount of $10,000, which amount represents the estimated cost of source inspection and testing as referred to in Article 14 of this Section I. To pay STATE upon completion of all work on PROJECT and within twenty-five (25) days of receipt of a detailed statement made upon final accounting of costs therefore, any amount over and above the aforesaid deposit for source inspection and testing required to complete CITY's financial obligation assumed pursuant to this Agreement. STATE will refund any unused balance of the deposit within (no. of days) days of issuance of a Notice of Completion.

16. To furnish, at CITY's expense and subject to the approval of STATE, a field site representative who is a licensed civil engineer in the State of California, to perform the functions of a Resident Engineer. The Resident Engineer shall not be an employee or subcontractor of the company, if any, that prepared the PROJECT PS&E or of the construction contractor.

17. At CITY's expense, to furnish sufficient qualified support staff, subject to the approval of STATE, to assist the Resident Engineer in, but not limited to, construction surveys, soils and foundation tests, measurement and computation of quantities, testing of construction materials, checking shop drawings, preparation of estimates and reports, preparation of "As-Built" drawings, and other inspection and staff services necessary to assure that the construction is being performed in accordance with PROJECT PS&E. Said qualified support staff shall be independent of the design engineering company and construction contractor, except that the PROJECT designer may check the shop drawings, do soils foundation tests, test construction materials, and do construction surveys.

18. Within one hundred eighty (180) days following the completion and acceptance of the PROJECT construction contract, to furnish STATE with a complete set of "As-Built" plans in accordance with STATE's then current CADD Users Manual, Plans Preparation Manual, and STATE practice. The submittal must also include all contract records, including survey documents and Records of Surveys (to include monument perpetuation per the Land Surveyor Act, section 8771). CITY shall also submit corrected full-sized hardcopy structure plans.

19. To retain or cause to be retained for audit by STATE or other government auditors for a period of four (4) years from the date of final payment under the contract, or for local Federal-aid projects for a period of three (3) years from STATE payment of the final
voucher, whichever is longer, all records and accounts relating to PROJECT construction. CITY shall retain records and accounts longer if required in writing by STATE.

20. Upon completion of PROJECT construction, CITY will operate and maintain at CITY’s cost any part of PROJECT located outside of the existing State Highway right of way (but including CITY underpasses and overcrossings of then existing State right of way) until any subsequent acceptance of any part of PROJECT into the State Highway System by STATE, approval by FHWA, if required, and conveyance of acceptable title to STATE.

21. If CITY cannot complete PROJECT as originally scoped, scheduled, and estimated, CITY will, only with STATE’s prior written consent, amend the PROJECT contract plans and specifications for suitable resolution to ensure a form of modified PROJECT that will at all times provide a safe and operable State Highway System.

22. If CITY terminates PROJECT prior to completion of the State Highway construction contract for PROJECT, STATE shall require CITY, at CITY’s expense, to return the State Highway right of way to its original condition or to a safe and operable condition. If CITY fails to do so, STATE reserves the right to finish PROJECT or place PROJECT in a safe and operable condition. STATE will bill CITY for all actual expenses incurred and CITY agrees to pay said bill within thirty (30) days.

23. If cultural, archaeological, paleontological, or other protected materials are encountered during PROJECT construction, CITY shall stop work in that area until a qualified professional can evaluate the nature and significance of the find and a plan is approved for the removal or protection of that material. The costs for any removal or protection of that material shall be covered as a PROJECT cost contemplated by this Agreement.

24. All PROJECT support services are to be performed by CITY, except as noted in Article 14 of this Section I. Should CITY request that STATE perform any portion of those support services, CITY shall first agree to reimburse STATE for such work pursuant to a separate executed agreement.

25. To provide a Construction Zone Enhancement Enforcement Program (COZEEP) by contracting directly with the California Highway Patrol (CHP) for all traffic restrictions as outlined in the STATE’s Construction Manual.

SECTION II

STATE AGREES:

1. At no cost to CITY, to provide quality assurance to assure that CITY’s PROJECT work is performed in full compliance with the approved PROJECT PS&E (contract plans and specifications) and in accordance with STATE’s then effective policies, procedures, standards, and practices. This quality assurance oversight function includes both the obligation and the authority to reject noncompliant PROJECT work and materials accepted by CITY, to order any actions needed for public safety or the preservation of property, and to assure compliance with all provisions of the encroachment permit(s) issued to CITY and CITY’s contractor.

2. Upon proper application by CITY and by CITY’s contractor, to issue, at no cost to CITY and CITY’s contractor, the necessary encroachment permits for required work within the State Highway right of way, as more specifically defined elsewhere in this Agreement.
3. To provide, at CITY’s cost, any "State-furnished material" as shown on the PROJECT PS&E or as determined during construction of PROJECT. Upon receipt of CITY’s request for any such "State-furnished materials,” STATE will order those materials and STATE’s Project Manager will have a bill submitted to CITY for the costs of those materials. Upon receipt of those materials and CITY’s payment, STATE will make those "State-furnished materials" available to CITY at a STATE designated site.

SECTION III

IT IS MUTUALLY AGREED:

1. STATE’s contractual obligations are subject to State Budget Act authority, the appropriation of resources by the Legislature, and the allocation of funds by the California Transportation Commission.

2. During PROJECT construction, representatives of CITY and STATE will cooperate and consult with each other to assure that all PROJECT work is accomplished according to the PROJECT PS&E (contract plans and specifications) and STATE’s applicable policies, procedures, standards, and practices. Satisfaction of these requirements shall be verified by STATE’s quality assurance representatives who are authorized to enter CITY’s property during construction for the purpose of monitoring and coordinating construction activities.

3. PROJECT PS&E (contract plans and specifications) changes shall be implemented by contract change orders that have been reviewed and concurred with by STATE’s representative. All changes affecting public safety or public convenience, all design and specification changes, and all major changes as defined in STATE’s Construction Manual shall be approved by STATE in advance of performing the work. Unless otherwise directed by STATE’s representative, change orders authorized as provided herein will not require an encroachment permit rider. All changes shall be shown on the "As-Built" plans.

4. CITY shall provide a construction contract claims process acceptable to STATE and shall process any and all claims through CITY’s claims process. STATE’s representative will be made available to CITY to provide advice and technical input in any claims process.

5. In the event that STATE proposes and/or requires a change in design standards, implementation of new or revised design standards shall be done in accordance with STATE’s Highway Design Manual Section 82.5, "Effective Date for Implementing Revisions to Design Standards.” STATE shall consult with CITY in a timely manner regarding effect of proposed and/or required change on PROJECT.

6. Any hazardous material or contamination of an HM-1 category found within the existing State Highway right of way during construction requiring remedy or remedial action (as defined in Division 20, Chapter 6.8 et seq. of the Health and Safety Code) shall be the responsibility of STATE. Any hazardous material or contamination of an HM-1 category found within the local road right of way during construction requiring the same defined remedy or remedial action shall be the responsibility of CITY. For the purpose of this Agreement, hazardous material of HM-1 category is defined as that level or type of contamination which State or Federal regulatory control agencies having jurisdiction have determined must be remediated by reason of its mere discovery regardless of whether it is disturbed by PROJECT or not. STATE shall sign the HM-1 manifest and pay all costs for remedy or remedial action within the existing State Highway right of way, except that if STATE determines, in its sole judgment, that STATE’s cost for remedy or remedial action is increased as a result of proceeding with construction of PROJECT, that additional cost identified by STATE shall be borne by CITY. As between CITY and STATE, CITY shall sign the HM-1 manifest and pay all costs for required remedy or remedial action within a local...
road or other property. While STATE will exert every reasonable effort to fund the remedy or remedial action for which STATE is responsible, in the event STATE is unable to provide funding, CITY will have the option to either delay further construction of PROJECT until STATE is able to provide funding or CITY may proceed with the remedy or remedial action as a PROJECT expense without any subsequent reimbursement by STATE.

7. Any remedy or remedial action with respect to any hazardous material or contamination of an HM-2 category found both within and outside the existing State Highway right of way during construction shall be the responsibility of CITY at CITY's expense, as a consequence of proceeding with PROJECT construction. For the purpose of this Agreement any hazardous material or contamination of HM-2 category is defined as that level or type of contamination which said regulatory control agencies would have allowed to remain in place if undisturbed or otherwise protected in place had PROJECT not proceeded. CITY shall sign any HM-2 manifest if construction of PROJECT proceeds and HM-2 material is removed in lieu of being treated in place.

8. If hazardous material or contamination of either HM-1 or HM-2 category is found during construction on new right of way acquired by or on account of CITY for PROJECT, CITY shall be responsible, at CITY's expense, for all required remedy or remedial action and/or protection in the absence of a generator or prior property owner willing and prepared to perform that corrective work.

9. The party responsible for funding any hazardous material cleanup shall be responsible for the development of the necessary remedy and/or remedial action plans and designs. Remedial actions proposed by CITY on the State Highway right of way shall be pre-approved by STATE and shall be performed in accordance with STATE's standards and practices and those standards and practices mandated by those Federal and State regulatory agencies.

10. STATE, in exercising its authority under section 591 of the Vehicle Code, has included any and all of the requirements set forth in Divisions 11, 12, 13, 14, and 15 of the Vehicle Code to the PROJECT areas open to public traffic. CITY shall take all necessary precautions for safe operation of CITY's vehicles, the construction contractor's equipment and vehicles and/or vehicles of personnel retained by CITY, and for the protection of the traveling public from injury and damage from such vehicles or equipment.

11. Upon completion and acceptance, subject to the approval of STATE, CITY will operate and maintain PROJECT facilities at its own cost until a Maintenance Agreement is executed or an existing agreement, if any, is amended to incorporate these new PROJECT facilities located on the State Highway.

12. Upon satisfactory completion of all PROJECT work under this Agreement, as determined by STATE, actual ownership and title to materials, equipment, and appurtenances installed within the State Highway right of way will automatically be vested in STATE, and materials, equipment, and appurtenances installed outside of the State Highway right of way will automatically be deemed to be under the control of CITY or an appropriate third party as determined by CITY. No further agreement will be necessary to transfer ownership as hereinbefore stated.

13. Nothing within the provisions of this Agreement is intended to create duties or obligations to or rights in third parties not a party to this Agreement or to affect the legal liability of either party to the Agreement by imposing any standard of care with respect to the development, design, construction, operation, or maintenance of State Highways and public facilities different from the standard of care imposed by law.
14. Neither STATE nor any officer or employee thereof is responsible for any damage or liability occurring by reason of anything done or omitted to be done by CITY under or in connection with any work, authority or jurisdiction arising under this Agreement. It is understood and agreed that CITY shall fully defend, indemnify and save harmless STATE and all its officers and employees from all claims, costs, suits or actions of every name, kind and description brought forth under, including, but not limited to, tortious, contractual, inverse condemnation or other theories or assertions of liability occurring by reason of anything done or omitted to be done by CITY under this Agreement.

15. Neither CITY nor any officer or employee thereof is responsible for any damage or liability occurring by reason of anything done or omitted to be done by STATE under or in connection with any work, authority or jurisdiction arising under this Agreement. It is understood and agreed that STATE shall fully defend, indemnify and save harmless CITY from any and all claims, costs, suits or actions of every name, kind and description brought forth under, including, but not limited to, tortious, contractual, inverse condemnation or other theories or assertions of liability occurring by reason of anything done or omitted to be done under this Agreement.

16. Prior to the commencement of any construction activity within the State Highway right of way, either STATE or CITY may terminate this Agreement by written notice to the other party.

17. No alteration or variation of the terms of this Agreement shall be valid unless made by a formal amendment executed by the parties hereto and no oral understanding or agreement not incorporated herein shall be binding on any of the parties hereto.
18. Those portions of this Agreement pertaining to the completion of PROJECT shall terminate upon completion and acceptance of the construction contract for PROJECT by CITY, the satisfactory completion of all post-construction obligations of CITY, and delivery of required PROJECT construction documents, with concurrence of STATE, or on December 31, 2009, whichever is earlier in time. However, the ownership, operation, maintenance, indemnification, and claims clauses shall remain in effect until terminated or modified, in writing, by mutual agreement. Should any construction-related or other claims arising out of PROJECT be asserted against one of the parties, the parties agree to extend the termination date of this Agreement.

STATE OF CALIFORNIA
Department of Transportation

WILL KEMPTON
Director

By: __________________________
Deputy District Director

CITY OF CUPERTINO

By: __________________________
City Manager

Approved as to form and procedure:

______________________________
Attorney
Department of Transportation

Attest: _________________________
City Clerk

Certified as to available funds:

______________________________
District Budget Manager

Approved as to form and procedure:

______________________________
City Attorney

Certified as to financial terms and policies:

______________________________
Accounting Administrator