Table of Contents

Chapter 1

CONTEXT ... 3
- Introduction ... 4
- Guidance Basis ... 6
- Design Needs of Pedestrians 8
- Design Needs of Bicyclists ... 12

Chapter 2

PEDESTRIAN TOOLBOX .. 13
- Marked Crosswalks ... 14
- Raised Pedestrian Crossings 16
- Sidewalk Zones ... 18
- Curb Ramps .. 20
- Curb Extensions ... 22
- Median Refuge Islands .. 23
- Pedestrian Signalization Improvements 24
- Rectangular Rapid Flashing Beacon 26
- Pedestrian Hybrid Beacon ... 27

Chapter 3

BICYCLE TOOLBOX .. 29
- Lane Reconfigurations and Road Diets 30
- Bicycle Boulevards ... 32
- Shared Lane Markings ... 34
- Standard Bike Lanes .. 36
- Buffered Bike Lanes ... 38
- One-Way Separated Bike Lanes 40
- Two-Way Separated Bike Lanes 42
- Lateral Shift ... 44
- Protected Intersection ... 46
- Separated Bicycle Signal Phase 48
- Separated Bikeway Barriers .. 50
- Separated Bikeways at Driveways (& Minor Streets) 52
- Bicycle Box ... 54
- Colored Pavement Treatments 56

Chapter 4

MIXED USE TOOLBOX ... 59
- Shared Use Paths ... 60
- Sidepaths ... 62
Chapter I

Context
Introduction

Updating the City of Santa Rosa’s Bicycle and Pedestrian Master Plan is intended to promote pedestrian and bicycle activity and comfort level by identifying policies, programs, and infrastructure improvements in the City.

This Design Guide has been developed to complement the City’s Bicycle and Pedestrian Master Plan update and other nationally recognized efforts to promote pedestrian and bicycle comfort level. The chapter will present a toolbox of current engineering standards and design approaches to implement bicycle and pedestrian enhancements.

What, Why, Where, When and How?

Future roadway planning, engineering, design and construction will continue to strive for a balanced transportation system that includes a seamless, accessible bicycle and pedestrian network and encourages bicycle and pedestrian travel wherever possible.

There are many reasons to integrate bicycle and pedestrian facilities into typical roadway development policy. The goal of a transportation system is to better meet the needs of people - whether in vehicles, bicyclists or pedestrians - and to provide access to goods, services, and activities.

Supporting active modes gives users important transportation choices, whether it is to make trips entirely by walking or cycling, or to access public transit. Often in urban or suburban areas, walking and cycling are the fastest and most efficient ways to perform short trips.

Convenient non-motorized travel provides many benefits, including reduced traffic congestion, user savings, road and parking facility savings, economic development, and a better environment by helping reduce the greenhouse gases as identified in the Climate Action Plan.

Compatible design does more than help those who already walk or bicycle. It encourages greater use of non-motorized transportation.

The design guidelines and recommendations in this document are for use on City of Santa Rosa roadways. Projects must not only be planned for their physical aspects as facilities serving specific transportation objectives; they must also consider effects on the aesthetic, social, economic and environmental values, needs, constraints and opportunities in a larger community setting. This is commonly known as Context Sensitive Design, and should be employed when determining which standard is applicable in each scenario.
All walkway and bikeway design guidelines in this document meet or exceed the minimums set by the Americans with Disabilities Act Accessible Design.

All traffic control devices, signs, pavement markings used and identified in this document must conform to the “California Manual on Uniform Traffic Control Devices” (CAMUTCD) as supplemented and adopted by Caltrans and Caltrans Design Manual.

Whenever possible and appropriate City of Santa Rosa’s Traffic & Construction Standards, the California Building Code (CBC), and the National Association of City Transportation Officials (NACTO)’s standards should be used for all facilities. There are situations where standards cannot be achieved due to geometric or environmental constraints, or may not be appropriate, due to a special situation. Engineering judgment may determine that for specific situations, the dimensions may be reduced.
Guidance Basis

The sections that follow serve as an inventory of pedestrian and bicycle design treatments and provide guidelines for their development. These treatments and design guidelines are important because they represent the tools for creating a pedestrian- and bicycle-friendly, accessible community. The guidelines are not, however, a substitute for a more thorough evaluation by a professional engineer prior to implementation of facility improvements. The following guidelines are referred to in these guidelines.

National Guidance

Separated Bike Lane Planning and Design Guide (2015) is the latest national guidance on the planning and design of separated bike lane facilities released by the Federal Highway Administration (FHWA). The resource documents best practices as demonstrated around the U.S., and offers ideas on future areas of research, evaluation and design flexibility.
California Guidance

The California Manual on Uniform Traffic Control Devices (CAMUTCD) (2014) is an amended version of the FHWA MUTCD 2009 edition modified for use in California. While standards presented in the CA MUTCD substantially conform to the FHWA MUTCD, the state of California follows local practices, laws and requirements with regards to signing, striping and other traffic control devices.

The California Highway Design Manual (HDM) (Updated 2015) establishes uniform policies and procedures to carry out highway design functions for the California Department of Transportation.

Complete Intersections: A Guide to Reconstructing Intersections and Interchanges for Bicyclists and Pedestrians (2010) is a reference guide presents information and concepts related to improving conditions for bicyclists and pedestrians at major intersections and interchanges. The guide can be used to inform minor signage and striping changes to intersections, as well as major changes and designs for new intersections.

Main Street, California: A Guide for Improving Community and Transportation Vitality (2013) reflects California’s current manuals and policies that improve multimodal access, livability and sustainability within the transportation system. The guide recognizes the overlapping and sometimes competing needs of main streets.

The Caltrans Memo: Design Flexibility in Multimodal Design (2014) encourages flexibility in highway design. The memo stated that “Publications such as the National Association of City Transportation Officials (NACTO) “Urban Street Design Guide” and “Urban Bikeway Design Guide,” ... are resources that Caltrans and local entities can reference when making planning and design decisions on the State highway system and local streets and roads.”
Design Needs of Pedestrians

The CA MUTCD recommends a normal walking speed of 3.5 ft per second when calculating the pedestrian clearance interval at traffic signals. The walking speed can drop to 3 ft per second for areas with older populations and persons with mobility impairments. While the type and degree of mobility impairment varies greatly across the population, the transportation system should accommodate these users to the greatest reasonable extent.

Types of Pedestrians

Pedestrians have a variety of characteristics and the transportation network should accommodate a variety of needs, abilities, and possible impairments. Age is one major factor that affects pedestrians’ physical characteristics, walking speed, and environmental perception. Children have low eye height and walk at slower speeds than adults. They also perceive the environment differently at various stages of their cognitive development. Older adults walk more slowly and may require assistive devices for walking stability, sight, and hearing.

Disabled Pedestrian Design Considerations

The table below summarizes common physical and cognitive impairments, how they affect personal mobility, and recommendations for improved pedestrian-friendly design.

<table>
<thead>
<tr>
<th>IMPAIRMENT</th>
<th>EFFECT ON MOBILITY</th>
<th>DESIGN SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Impairment Necessitating Wheelchair and Scooter Use</td>
<td>Difficulty propelling over uneven or soft surfaces.</td>
<td>Firm, stable surfaces and structures, including ramps or beveled edges.</td>
</tr>
<tr>
<td>Cross-slopes cause wheelchairs to veer downhill or tip sideways.</td>
<td>Cross-slopes of less than two percent.</td>
<td>Sufficient width and maneuvering space.</td>
</tr>
<tr>
<td>Physical Impairment Necessitating Walking Aid Use</td>
<td>Difficulty negotiating steep grades and cross slopes; decreased stability and tripping hazard.</td>
<td>Cross-slopes of less than two percent. Smooth, non-slippery travel surface.</td>
</tr>
<tr>
<td>Slower walking speed and reduced endurance; reduced ability to react.</td>
<td>Longer pedestrian signal cycles, shorter crossing distances, median refuges, and street furniture.</td>
<td></td>
</tr>
<tr>
<td>Hearing Impairment</td>
<td>Less able to detect oncoming hazards at locations with limited sight lines (e.g. driveways, angled intersections, channelized right turn lanes) and complex intersections.</td>
<td>Longer pedestrian signal cycles, clear sight distances, highly visible pedestrian signals and markings.</td>
</tr>
<tr>
<td>Vision Impairment</td>
<td>Limited perception of path ahead and obstacles; reliance on memory; reliance on non-visual indicators (e.g. sound and texture).</td>
<td>Accessible text (larger print and raised text), accessible pedestrian signals (APS), guide strips and detectable warning surfaces, safety barriers, and lighting.</td>
</tr>
<tr>
<td>Cognitive Impairment</td>
<td>Varies greatly. Can affect ability to perceive, recognize, understand, interpret, and respond to information.</td>
<td>Signs with pictures, universal symbols, and colors, rather than text.</td>
</tr>
</tbody>
</table>
PEDESTRIAN CHARACTERISTICS BY AGE

<table>
<thead>
<tr>
<th>AGE</th>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>Learning to walk</td>
</tr>
<tr>
<td></td>
<td>Requires constant adult supervision</td>
</tr>
<tr>
<td></td>
<td>Developing peripheral vision and depth perception</td>
</tr>
<tr>
<td>5-8</td>
<td>Increasing independence, but still requires supervision</td>
</tr>
<tr>
<td></td>
<td>Poor depth perception</td>
</tr>
<tr>
<td>9-13</td>
<td>Susceptible to “darting out” in roadways</td>
</tr>
<tr>
<td></td>
<td>Insufficient judgment</td>
</tr>
<tr>
<td></td>
<td>Sense of invulnerability</td>
</tr>
<tr>
<td>14-18</td>
<td>Improved awareness of traffic environment</td>
</tr>
<tr>
<td></td>
<td>Insufficient judgment</td>
</tr>
<tr>
<td>19-40</td>
<td>Active, aware of traffic environment</td>
</tr>
<tr>
<td>41-65</td>
<td>Slowing of reflexes</td>
</tr>
<tr>
<td>65+</td>
<td>Difficulty crossing street</td>
</tr>
<tr>
<td></td>
<td>Vision loss</td>
</tr>
<tr>
<td></td>
<td>Difficulty hearing vehicles approaching from behind</td>
</tr>
</tbody>
</table>

Design Needs of Runners

Running is an important recreation and fitness activity commonly performed on shared use paths. Many runners prefer softer surfaces (such as rubber, bare earth or crushed rock) to reduce impact. Runners can change their speed and direction frequently. If high volumes are expected, controlled interaction or separation of different types of users should be considered.

Design Needs of Strollers

Strollers are wheeled devices pushed by pedestrians to transport babies or small children. Stroller models vary greatly in their design and capacity. Some strollers are designed to accommodate a single child, others can carry 3 or more. Design needs of strollers depend on the wheel size, geometry and ability of the adult who is pushing the stroller.

Strollers commonly have small pivoting front wheels for easy maneuverability, but these wheels may limit their use on unpaved surfaces or rough pavement. Curb ramps are valuable to these users. Lateral overturning is one main safety concern for stroller users.
Design Needs of Wheelchair Users

As the American population ages, the age demographics in Santa Rosa may also shift, and the number of people using mobility assistive devices (such as manual wheelchairs, powered wheelchairs) will increase.

Manual wheelchairs are self-propelled devices. Users propel themselves using push rims attached to the rear wheels. Braking is done through resisting wheel movement with the hands or arm. Alternatively, a second individual can control the wheelchair using handles attached to the back of the chair.

Power wheelchairs use battery power to move the wheelchair. The size and weight of power wheelchairs limit their ability to negotiate obstacles without a ramp. Various control units are available that enable users to control the wheelchair movement, based on their ability (e.g., joystick control, breath controlled, etc).

Maneuvering around a turn requires additional space for wheelchair devices. Providing adequate space for 180 degree turns at appropriate locations is an important element of accessible design.

Wheelchair User Design Considerations

<table>
<thead>
<tr>
<th>Effect on Mobility</th>
<th>Design Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty propelling over uneven or soft surfaces.</td>
<td>Firm, stable surfaces and structures, including ramps or beveled edges.</td>
</tr>
<tr>
<td>Cross-slopes cause wheelchairs to veer downhill.</td>
<td>Cross-slopes of less than two percent.</td>
</tr>
<tr>
<td>Require wider path of travel.</td>
<td>Sufficient width and maneuvering space.</td>
</tr>
</tbody>
</table>

Wheelchair User Dimensions

- **Physical Width**: 2’6” (0.75 m)
- **Minimum Operating Width**: 3’ (0.9 m)
- **Minimum Width of Accessway**: 4’ (1.2 m)
- **Minimum to Make a 180 Degree Turn**: 5’ (1.5 m)

*Provide 5’ x 5’ passing zone every 200’ if travel way is at minimum width
Design Needs of Bicyclists

The facility designer must have an understanding of how bicyclists operate and how their bicycle influences that operation. Bicyclists, by nature, are much more affected by poor facility design, construction and maintenance practices than motor vehicle drivers.

By understanding the unique characteristics and needs of bicyclists, a facility designer can provide quality facilities and minimize user risk.

Bicycle as a Design Vehicle

Similar to motor vehicles, bicyclists and their bicycles exist in a variety of sizes and configurations. These variations occur in the types of vehicle (such as a conventional bicycle, a recumbent bicycle or a tricycle), and behavioral characteristics (such as the comfort level of the bicyclist). The design of a bikeway should consider reasonably expected bicycle types on the facility and utilize the appropriate dimensions.

The Bicycle Rider figure illustrates the operating space and physical dimensions of a typical adult bicyclist, which are the basis for typical facility design. Bicyclists require clear space to operate within a facility. This is why the minimum operating width is greater than the physical dimensions of the bicyclist. Bicyclists prefer five feet or more operating width, although four feet may be minimally acceptable.

In addition to the design dimensions of a typical bicycle, there are many other commonly used pedal-driven cycles and accessories to consider when planning and designing bicycle facilities. The most common types include tandem bicycles, recumbent bicycles, and trailer accessories.

Bicycle as Design Vehicle - Design Speed Expectations

<table>
<thead>
<tr>
<th>BICYCLE TYPE</th>
<th>FEATURE</th>
<th>TYPICAL SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright Adult Bicyclist</td>
<td>Paved level surfacing</td>
<td>8-12 mph*</td>
</tr>
<tr>
<td></td>
<td>Crossing Intersections</td>
<td>10 mph</td>
</tr>
<tr>
<td></td>
<td>Downhill</td>
<td>30 mph</td>
</tr>
<tr>
<td></td>
<td>Uphill</td>
<td>5-12 mph</td>
</tr>
<tr>
<td>Recumbent Bicyclist</td>
<td>Paved level surfacing</td>
<td>18 mph</td>
</tr>
</tbody>
</table>

* Typical speed for casual riders per AASHTO 2013.
Chapter 2
Pedestrian Toolbox
Marked Crosswalks

A marked crosswalk signals to motorists that they must yield to pedestrians and encourages pedestrians to cross at designated locations. Installing crosswalks alone will not necessarily enhance the comfort level of crossings. At mid-block locations, crosswalks can be marked where there is a demand for crossing and there are no nearby marked crosswalks.

Typical Use

All crosswalks should be marked at signalized intersections. At unsignalized intersections, crosswalks may be marked under the following conditions:

» At a complex intersection, to orient pedestrians in finding their way across.

» At an offset intersection, to show pedestrians the shortest route across traffic with the least exposure to vehicular traffic and traffic conflicts.

» At an intersection with visibility constraints, to position pedestrians where they can best be seen by oncoming traffic.

» At an intersection within a school zone on a walking route.

Design Features

» The crosswalk should be located to align as closely as possible with the through pedestrian zone of the sidewalk corridor.

» Users should not have to leave the crosswalk or reorient themselves from the crosswalk when accessing the curb ramp onto the sidewalk.

» See page 20 for design guidelines for curb ramps.
Further Considerations

Pedestrians are sensitive to out-of-direction travel, and reasonable accommodations should be made to make crossings both convenient at locations with adequate visibility.

Continental crosswalk markings should be used at crossings with high pedestrian use or where vulnerable pedestrians are expected, including: school crossings, across arterial streets for pedestrian-only signals, at mid-block crosswalks, and at intersections where there is expected high pedestrian use and the crossing is not controlled by signals or stop signs. High-visibility crosswalks are not appropriate for all locations. Other crosswalk marking patterns are provided for in the CA MUTCD.

Some cities prohibit omitting or removing a marked crosswalk at intersections in order to require a three-stage pedestrian crossing. Intersections with three-stage crossings lead to arduous and increased crossing distances, pedestrian frustration, encourages jaywalking, and exhibits modal bias favoring motor vehicle level-of-service over other modes. There are circumstances when only three crosswalks are utilized and typically occur at or near interchanges and freeway ramps.

Materials and Maintenance

Because the effectiveness of marked crossings depends entirely on their visibility, maintaining marked crossings should be a high priority. Thermoplastic markings offer increased durability than conventional paint.

Approximate Cost

Depending on the type of material used, width of the crossing and width of the roadway, approximate installation costs are $500 for a regular striped crosswalk, $1,000 for a ladder crosswalk, and $8,000 for a patterned concrete crosswalk. In addition, the cost of a curb ramp is about $5,000-$10,000 per ramp.

Due to various number of crosswalk styles in use, signing standards, color and aesthetics, other factors will affect the final cost.

Maintenance of markings should also be considered.
Raised Pedestrian Crossings

A raised crosswalk or intersection can eliminate grade changes from the pedestrian path and give pedestrians greater prominence as they cross the street. Raised crosswalks also function as speed tables, and encourage motorists to slow down. As such, they should be used only in cases where a special emphasis on pedestrians is desired.

Raised crosswalks are typically implemented on low-speed streets, Bike Boulevards and other areas of very high pedestrian activity. They are often paired with other treatments such as curb extensions for greater traffic calming effect.

Typical Use

Like a speed hump/table, raised crosswalks have a traffic slowing effect which may be unsuitable on high-speed streets, roadways with sharp curves, designated transit or freight routes, and in locations that would reduce access for emergency responders. Use detectable warnings at the curb edges to alert vision-impaired pedestrians that they are entering the roadway.

Approaches to the raised crosswalk may be designed to be similar to speed humps/tables.

Design Features

» Use detectable warnings at the curb edges to alert vision-impaired pedestrians that they are entering the roadway.

» Approaches to the raised crosswalk may be designed to be similar to speed humps.

» Drainage improvements may be required depending on the grade of the roadway.

» Special paving materials can be used to increase conspicuity of the crossing, and alert drivers to the presence of pedestrians.
Further Considerations

» The noise of vehicles traveling over raised crosswalks may be of concern to nearby residents and businesses.

» Refer to Americans with Disabilities Act (ADA) and California Building Code (CBC) for additional requirements.

Materials and Maintenance

Because the effectiveness of marked crossings depends entirely on their visibility, maintaining marked crossings should be a high priority. Ensure drainage pipes used to channel stormwater past the raised intersection are kept free of debris, to prevent stormwater from backing up and pooling.

Approximate Cost

Raised crosswalks are approximately $2,000 to $15,000, depending on drainage conditions and material used.
Pedestrian Toolbox

Sidewalk Zones & Widths

Sidewalks are the most fundamental element of the walking network, as they provide an area for pedestrian travel separated from vehicle traffic. Providing adequate and accessible facilities can lead to increased numbers of people walking, improved accessibility, and the creation of social space.

Curbside Lane
The curbside lane can act as a flexible space to further buffer the sidewalk from moving traffic, and may be used for a bike lane. Curb extensions and bike corrals may occupy this space where appropriate.

Buffer Zone
The buffer zone, also called the furnishing or landscaping zone, buffers pedestrians from the adjacent roadway, and is also the area where elements such as street trees, signal poles, signs, and other street furniture are properly located.

Pedestrian Through Zone
The through zone is the area intended for pedestrian travel. This zone should be entirely free of permanent and temporary objects. Wide through zones are needed in downtown areas or where pedestrian flows are high.

Frontage Zone
The frontage zone allows pedestrians a comfortable “shy” distance from the building fronts. It provides opportunities for window shopping, to place signs, planters, or chairs.

In the **edge zone** there should be a 6 inch wide curb.
Pedestrian Toolbox

<table>
<thead>
<tr>
<th>Street Classification</th>
<th>Parking Lane/Enhancement Zone</th>
<th>Buffer Zone</th>
<th>Pedestrian Through Zone</th>
<th>Frontage Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Streets</td>
<td>Varies</td>
<td>4 - 6 ft</td>
<td>6 ft</td>
<td>N/A</td>
</tr>
<tr>
<td>Downtown and Pedestrian Priority Areas</td>
<td>Varies</td>
<td>4 - 6 ft</td>
<td>12 ft</td>
<td>2.5 - 10 ft</td>
</tr>
<tr>
<td>Arterials and Collectors</td>
<td>Varies</td>
<td>4 - 6 ft</td>
<td>6 - 8 ft</td>
<td>2.5 - 5 ft</td>
</tr>
</tbody>
</table>

Typical Uses

- Wider sidewalks should be installed near schools, at transit stops, in downtown areas, or anywhere high concentrations of pedestrians exist.
- At transit stops, an 8 ft by 5 ft clear space is required for accessible passenger boarding/alighting at the front door location per ADA requirements.
- Sidewalks should be continuous on both sides of urban commercial streets, and should be required in areas of moderate residential density (1-4 dwelling units per acre).
- When retrofitting gaps in the sidewalk network, locations near transit stops, schools, parks, public buildings, and other areas with high concentrations of pedestrians should be the highest priority.
- In unincorporated areas of Santa Rosa, no curb and gutter is necessary to establish a sidewalk. Instead, the sidewalk should feature a wide furnishing zone, which may be configured as an open ditch for stormwater catchment and infiltration. Ditches can be retrofitted into bioswales or raingardens for filtration and water purification.

Materials and Maintenance

Sidewalks are typically constructed out of concrete and are separated from the roadway by a curb or gutter and sometimes a landscaped boulevard. Less expensive walkways constructed of asphalt, crushed stone, or other stabilized surfaces may be appropriate. Ensure accessibility and properly maintain all surfaces regularly. Surfaces must be firm, stable, and slip resistant. Colored, patterned, or stamped concrete can add distinctive visual appeal.

Approximate Cost

Cost of standard sidewalks range from about $25 per square foot for concrete sidewalk. This cost can increase with additional right-of-way acquisition or addition of landscaping, lighting or other aesthetic features. As an interim measure, an asphalt concrete path can be placed until such time that a standard sidewalk can be built. The cost of asphalt path can be less than half the cost of a standard sidewalk.
Curb Ramps

Curb ramps are the design elements that allow all users to make the transition from the street to the sidewalk. A sidewalk without a curb ramp can be useless to someone in a wheelchair, forcing them back to a driveway and out into the street for access. There are a number of factors to be considered in the design and placement of curb ramps.

Typical Use

» Curb ramps must be installed at all intersections and midblock locations where pedestrian crossings exist, as mandated by federal legislation (1973 Rehabilitation Act and ADA 1990). All newly constructed and altered roadway projects must include curb ramps. In addition, existing facilities must be upgraded to current standards when appropriate.

» The edge of an ADA compliant curb ramp shall be marked with a tactile warning device (also known as truncated domes) to alert people with visual impairments to changes in the pedestrian environment. Contrast between the raised tactile device and the surrounding infrastructure is important so that the change is readily evident to partially sighted pedestrians. These devices are most effective when adjacent to smooth pavement so the difference is easily detected.

Design Features

» The level landing at the top of a ramp shall be at least 4 feet long and at least the same width as the ramp itself. The slope of the ramp shall be compliant to current standards.

» If the ramp runs directly into a crosswalk, the landing at the bottom will be in the roadway.

» If the top landing is within the sidewalk or corner area where someone in a wheelchair may have to change direction, the landing must be a minimum of 4’-0” long (in the direction of the ramp run) and at least as wide as the ramp, although a width of 5’-0” is preferred.
Further Considerations

Where feasible, separate directional curb ramps for each crosswalk at an intersection should be provided rather than having a single ramp at a corner for both crosswalks. Although diagonal curb ramps might save money, they orient pedestrians directly into the traffic zone, which can be challenging for wheelchair users and pedestrians with visual impairment. Diagonal curb ramp configurations are not recommended.

Curb return radii need to be considered when designing directional ramps. While curb ramps are needed for use on all types of streets, the highest priority locations are in downtown areas and on streets near transit stops, schools, parks, medical facilities, shopping areas.

Materials and Maintenance

It is critical that the interface between a curb ramp and the street be maintained adequately. Asphalt street sections can develop potholes at the foot of the ramp, which can catch the front wheels of a wheelchair.

Approximate Cost

The cost is approximately $5,000-$10,000 per curb ramp depending on drainage and right-of-way.
Pedestrian Toolbox

Curb Extensions

Curb extensions minimize pedestrian exposure during crossing by shortening crossing distance and giving pedestrians a better chance to see and be seen before committing to crossing.

Typical Use

» Within parking lanes appropriate for any crosswalk where it is desirable to shorten the crossing distance and there is a parking lane adjacent to the curb.

» May be possible within non-travel areas on roadways with excess space.

» Particularly helpful at midblock crossing locations.

» Curb extensions should not impede bicycle travel in the absence of a bike lane.

» Curb extensions are often utilized as in-lane transit stops, allowing passengers to board and alight outside of the pedestrian through zone.

Materials and Maintenance

Planted curb extensions may be designed as a bioswale, a vegetated system for stormwater management. To maintain proper stormwater drainage, curb extensions can be constructed as refuge islands offset by a drainage channel or feature a covered trench drain.

Design Features

A. For purposes of efficient street sweeping, the minimum radius for the reverse curves of the transition is 10 ft and the two radii should be balanced to be nearly equal.

B. When a bike lane is present, the curb extensions should terminate one foot short of the parking lane to enhance bicyclist access.

C. Reduces pedestrian crossing distance by 6-8 ft.

D. Planted curb extensions may be designed as a bioswale for stormwater management.

Approximate Cost

The cost of a curb extension can range from $2,000 to $20,000 depending on the design and site condition, with the typical cost approximately $12,000. Green/vegetated curb extensions cost between $10,000 to $40,000.
Median Refuge Islands

Median refuge islands are located at the mid-point of a marked crossing and help improve pedestrian access by increasing pedestrian visibility and allowing pedestrians to cross one direction of traffic at a time. Refuge islands minimize pedestrian exposure at mid-block crossings by shortening the crossing distance and increasing the number of available gaps for crossing.

Typical Use

» Refuge islands can be applied on any roadway with a left turn center lane or median that is at least 6’ wide. Islands are appropriate at signalized or unsignalized crosswalks.

» The refuge island must be accessible, preferably with an at-grade passage through the island rather than ramps and landings.

» The island should be at least 6’ wide between travel lanes (to accommodate wheelchair users) and at least 20’ long (40’ minimum preferred).

» Provide double centerline marking, reflectors, and “KEEP RIGHT” signage (CA MUTCD R4-7a) in the island on streets with posted speeds above 25 mph.

Materials and Maintenance

Refuge islands may require frequent maintenance of road debris. Trees and plantings in a landscaped median must be maintained so as not to impair visibility, and should be no higher than 1 foot 6 inches.

Design Features

» Median refuge islands can be installed on roadways with existing medians or on multi-lane roadways where adequate space exists.

» Median Refuge Islands should always be paired with crosswalks, and should include advance pedestrian warning signage when installed at uncontrolled crossings.

» On multi-lane roadways, consider configuration with active warning beacons for improved yielding compliance.

Approximate Cost

The approximate cost to install a median refuge island ranges from $500 to $1,100 per foot, or about $3,500 to $4,000, depending on the design, site conditions, landscaping, and whether the median can be added as a part of a larger street reconstruction project or utility upgrade.
Pedestrian Toolbox

Pedestrian Signalization Improvements

Pedestrian signal heads indicate to pedestrians when to cross at a signalized crosswalk. All traffic signals should be equipped with pedestrian signal indications except where pedestrian crossing is prohibited by signage. Pedestrian signals should be used at traffic signals wherever warranted, according to the CA MUTCD.

Typical Use

» Countdown pedestrian signals are particularly valuable for pedestrians, as they indicate whether a pedestrian has time to cross the street before the signal phase ends. Countdown signals should be used at all new and rehabilitated signalized intersections. Countdown timers are now standard at all signalized crossings in Santa Rosa.

» Adequate pedestrian crossing time is a critical element of the walking environment at signalized intersections. The length of a signal phase with parallel pedestrian movements should provide sufficient time for a pedestrian to safely cross the adjacent street.

» There are several types of signal timing for pedestrian signals, including concurrent, exclusive, “Leading pedestrian interval” (LPI), and all-red interval. In general, shorter cycle lengths and extended walk intervals provide better service to pedestrians and encourage better signal compliance. For optimal pedestrian service, fixed-time signal operation usually works best.

» Leading Pedestrian Intervals (LPI) are used to reduce right turn and permissive left turn vehicle and pedestrian conflicts. The through pedestrian interval is initiated first, in advance of the concurrent through/right/permissive left turn interval. The LPI minimizes vehicle-pedestrian conflicts because it gives pedestrians a 3-10 second headstart into the intersection, thereby making them more visible, and reducing crossing exposure time. Accessible Pedestrian Signals (APS) are recommended with an LPI.
Pedestrian Toolbox

Design Features

» The CA MUTCD recommends that traffic signal timing assumes a pedestrian walking speed of 3.5 ft per second.

» At crossings where older pedestrians or pedestrians with disabilities are expected, crossing speeds as low as 3 ft per second should be assumed. Special pedestrian phases can be used to provide greater visibility or more crossing time for pedestrians at certain intersections.

» Pedestrian pushbuttons may be installed at locations where pedestrians are expected intermittently. When used, pushbuttons should be well signed and within reach and operable from a flat surface for pedestrians in wheelchairs and with visual disabilities. They should be conveniently placed in the area where pedestrians wait to cross. Section 4E.09 within the CA MUTCD provides detailed guidance for the placement of push buttons to ensure accessibility.

Further Considerations

» When push buttons are used, they should be located so that someone in a wheelchair can reach the button from a level area of the sidewalk without deviating significantly from the natural line of travel into the crosswalk. Push button should be marked (for example, with arrows) so that it is clear which signal is affected.

» In areas with very heavy pedestrian traffic, consider an all-pedestrian signal phase to give pedestrians free passage in the intersection when all motor vehicle traffic movements are stopped.

» At locations with very high pedestrian volumes, such as downtown, an exclusive pedestrian signal phase called a “Pedestrian Scramble” can be provided to reduce vehicle turning conflicts.

Materials and Maintenance

It is important to perform ongoing maintenance of traffic control equipment. Consider semi-annual inspections of controller and signal equipment, intersection hardware, and detectors.

Approximate Cost

Adjusting signal timing is relatively inexpensive, as it requires only a few hours of staff time to accomplish. New signal equipment ranges from $20,000 to $140,000.
Rectangular Rapid Flashing Beacons (RRFB)

Rectangular Rapid Flash Beacons (RRFB) are a type of active warning beacon used at unsignalized crossings. They are designed to increase motor vehicle yielding compliance on multi-lane or high-volume roadways. Guidance for marked/unsignalized crossings applies.

Typical Use

RRFBs are typically activated by pedestrians manually with a push button, or can be actuated automatically with passive detection systems.

RRFBs shall not be used at crosswalks controlled by YIELD signs, STOP signs, or traffic control signals.

RRFBs shall initiate operation based on user actuation and shall cease operation at a predetermined time after the user actuation or, with passive detection, after the user clears the crosswalk.

Materials and Maintenance

RRFBs should be regularly maintained to ensure that all lights and detection hardware are functional.

Design Features

Guidance for marked/unsignalized crossings applies.

- A study of the effectiveness of going from a no-beacon arrangement to a two-beacon RRFB installation increased yielding from 18 percent to 81 percent. A four-beacon arrangement raised compliance to 88%. Additional studies of long term installations show little to no decrease in yielding behavior over time.

- See FHWA Interim Approval 21 (IA-21) for more information on device application standards.

Approximate Cost

RRFBs range in price from $5,000 to $20,000 for a solar powered unit depending on the location, width of the road and other factors.
Pedestrian Hybrid Beacon (HAWK)

Hybrid beacons or High-Intensity Activated Crosswalk (HAWK) beacons are used to improve unsignalized intersections or midblock crossings of major streets. It consists of a signal head with two red lenses over a single yellow lens on the major street, and a pedestrian signal head for the crosswalk. The signal is only activated when a pedestrian and/or bicyclist is present, resulting in minimal delay for motor vehicle traffic.

Typical Use

HAWK beacons are only used at marked mid-block crossings or unsignalized intersections. They are typically activated with a pedestrian pushbutton at each end. If a median refuge island is used at the crossing, another pedestrian pushbutton can be located on the island to create a two-stage crossing.

Design Features

» Hybrid beacons may be installed without meeting traffic signal control warrants if roadway speed and volumes are excessive for comfortable pedestrian crossings.

» If installed within a signal system, signal engineers should evaluate the need for the hybrid signal to be coordinated with other signals.

» HAWK beacons should be installed at least 100 feet from side streets or driveways that are controlled by STOP or YIELD signs. Parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the marked crosswalk to provide adequate sight distance. (CA MUTCD 4F)

Further Considerations

» HAWK beacons may also be actuated by infrared, microwave, or video detectors.

» Each crossing, regardless of traffic speed or volume, requires additional review by a registered engineer to identify sight lines, potential impacts on traffic progression, timing with adjacent signals, capacity, and safety.

» The installation of HAWK beacons should also include public education and enforcement campaigns to ensure proper use and compliance.

Materials and Maintenance

Hybrid beacons are subject to the same maintenance needs and requirements as standard traffic signals. Signing and striping need to be maintained to help users understand any unfamiliar traffic control.

Approximate Cost

Hybrid beacons are more expensive than other beacons, ranging in costs from $150,000 to $250,000, but are generally less expensive than full signals.
Pedestrian Toolbox
Chapter 3

Bicycle Toolbox
Lane Reconfigurations and Road Diets

Streets with excess roadway capacity or wider lanes often make excellent candidates for lane reconfigurations or road diet projects. The removal of a single travel lane will generally provide sufficient space for bike lanes on both sides of a street. Even if the width of the sidewalk does not increase, pedestrians benefit from the buffer that the new bike lanes create between the sidewalk and travel lanes. Although the actual roadway crossing distance has not been reduced, the addition of bike lanes reduces the number of vehicle travel lanes pedestrians must cross.

Typical Use

- Depending on a street’s existing configuration, traffic operations, user needs, and comfort level, various lane reconfigurations may be appropriate.
- For instance, a four-lane street (with two travel lanes in each direction) could be modified to provide one travel lane in each direction, a center turn lane, and bike lanes.
- Prior to implementing this measure, a traffic analysis should identify potential impacts, including diversion to other parallel neighborhood streets. Road diets should also consider school, city bus, emergency service access, and other truck volumes.

Design Features

- Narrower lanes generally encourage slower vehicle speeds, higher comfort for people walking and biking.
- Vehicle lane width: Width depends on project. No narrowing may be needed if a lane is removed. Lanes along transit and freight routes may need a minimum of 11 feet to accommodate larger vehicles.
- Bicycle lane width: Standard bicycle lane width is 5-6 feet. A buffered bike lane requires an additional 2-3 feet.
- Number of Lanes: Generally, 3 lanes with a center turn lane can support 20,000 vehicles per day.
Materials and Maintenance

Road configurations are often paired with the road repaving schedule to reduce costs. Repair rough or uneven pavement surface. Use bicycle compatible drainage grates, and ensure they are flush with the pavement.

Approximate Cost

Adding striped shoulders can cost as little as $1,000 per mile if old paint does not need to be removed.

The cost for restriping a street to bike lanes or reducing the number of lanes to add on-street parking is approximately $11 per foot on street, depending on the number of lane lines to be removed.

The approximate cost for restriping a roadway as depicted can range from $10,000-$60,000 per mile.
Bicycle Toolbox

Bicycle Boulevards

A Bicycle Boulevard is a low-speed, low-volume roadway that has been modified, as needed, to enhance comfort and convenience for people bicycling. It provides better conditions for bicycling while maintaining the neighborhood character and neighborhood and emergency vehicle access. Bicycle Boulevards are intended to serve as the primary low-stress bikeway network, providing direct, and convenient routes across Santa Rosa. Key elements of Bicycle Boulevards are unique signage and pavement markings, traffic calming and diversion features to maintain low vehicle volumes, and convenient major street crossings.

Typical Use

» Parallel with, and in close proximity to major thoroughfares (1/4 mile or less) on low-volume, low-speed streets.

» Follow a desire line for bicycle travel that is ideally long and relatively continuous (2-5 miles).

» Avoid alignments with excessive zigzag or circuitous routing. The bikeway should have less than 10% out of direction travel compared to shortest path of primary corridor.

» Local streets with traffic volumes of fewer than 1,500 vehicles per day. Utilize traffic calming to maintain or establish low volumes and discourage vehicle cut through / speeding.

Design Features

» Signs and pavement markings are the minimum treatments necessary to designate a street as a bicycle boulevard.

» Implement volume control treatments based on the context of the bicycle boulevard, using engineering judgment. Motor vehicle volumes should not exceed 1,500 vehicles per day.

» Intersection crossings should be designed to enhance comfort and minimize delay for bicyclists, following crossing treatment progression to achieve Level of Traffic Stress 1 or 2.
Further Considerations

» Bicycle boulevards are established on streets that improve connectivity to key destinations and provide a direct, low-stress route for bicyclists, with low motorized traffic volumes and speeds, designated and designed to give bicycle travel priority over other modes.

» Bicycle boulevard retrofits to local streets are typically located on streets without existing signalized accommodation at crossings of collector and arterial roadways. Without treatments for bicyclists, these intersections can become major barriers along the bicycle boulevard.

» Traffic calming can deter motorists from driving on a street. Anticipate and monitor vehicle volumes on adjacent streets to determine whether traffic calming results in inappropriate volumes. Traffic calming can be implemented on a trial basis.

Materials and Maintenance

Bicycle boulevards require few additional maintenance requirements to local roadways. Signage, signals, and other traffic calming elements should be inspected and maintained according to local standards.

Approximate Cost

Costs vary depending on the type of treatments proposed for the corridor. Simple treatments such as wayfinding signage and markings are most cost-effective, but more intensive treatments will have greater impact at lowering speeds and volumes, at higher cost. Costs can range from $5,000/mile on the simple end to $50,000/mile for significant horizontal deflection and diversion.
Shared Lane Markings

Shared Lane Marking (SLM) or “Sharrow” stencils are used in California as an additional treatment for Bike Route facilities and are currently approved in conjunction with on-street parking. The CA MUTCD approved pavement marking can serve a number of purposes, such as making motorists aware of the need to share the road with bicyclists, showing bicyclists the direction of travel, and, with proper placement, reminding bicyclists to bike further from parked cars to prevent collisions with drivers opening car doors.

Typical Use

» Shared Lane Markings are not appropriate on paved shoulders or in bike lanes, and should not be used on roadways that have a posted speed greater than 35 mph.

» Shared Lane Markings should be implemented in conjunction with BIKEs MAY USE FULL LANE signs.

Design Features

A Placement in the center of the travel lane is preferred in constrained conditions.

» Markings should be placed immediately after intersections and spaced at 250 foot intervals thereafter.

» When placed adjacent to parking, markings should be outside of the “door zone”. Minimum placement is 11 feet from the curb face.
Sharrows also serve as positional guidance and raise bicycle awareness where there isn’t space to accommodate a full-width bike lane. Center lane markings may or may not be necessary depending on travel lane widths. Narrower two way residential streets (less than 22 ft between parked cars) have a natural traffic calming effect without center turn lanes. Pictured above: sharrows on Sonoma Ave.

Further Considerations

» Consider modifications to signal timing to induce a bicycle-friendly travel speed for all users.

» Though not always possible, placing the markings outside of vehicle tire tracks will increase the life of the markings and the long-term cost of the treatment.

» A green thermoplastic background can be applied to further increase the visibility of the shared lane marking.

» A “Pass Bicycle 3 FT MIN” sign (R117(CA)) can be installed to indicate to drivers the required passing distance per California Vehicle Code section 21760.

Approximate Cost

Sharrows typically cost $200 per each marker for a lane-mile cost of $4,200, assuming the CA MUTCD guidance of sharrow placement every 250 feet.

Materials and Maintenance

» Shared lane markings should be inspected annually and maintained accordingly, especially if located on roadways that feature high vehicle turning movements, or bus, or truck traffic. They can be placed in the center of the lane of travel to reduce wear from vehicles.
Bicycle Toolbox

Bicycle Lanes

On-street bike lanes (Class II Bikeways) designate an exclusive space for bicyclists through the use of pavement markings and signs. The bike lane is located directly adjacent to motor vehicle travel lanes and is used in the same direction as motor vehicle traffic. Bike lanes are typically on the right side of the street, between the adjacent travel lane and curb, road edge or parking lane.

Typical Use

- Bike lanes may be used on any street with adequate space, but are most effective on streets with moderate traffic volumes ≤ 6,000 ADT (≤ 3,000 preferred).
- Bike lanes are most appropriate on streets with lower to moderate speeds ≤ 25 mph.
- Appropriate for skilled adult riders on most streets.
- May be appropriate for children when configured as 6+ ft wide lanes on lower-speed, lower-volume streets with one lane in each direction.

Design Features

- **Mark inside line with 6” stripe.** *(CA MUTCD 9C.04)* Mark 4” parking lane line or “Ts”.¹
- Include a bicycle lane marking *(CA MUTCD Figure 9C-3)* at the beginning of blocks and at regular intervals along the route. *(CA MUTCD 9C.04)*
- 6 foot width preferred adjacent to on-street parking, (5 foot min.) *(City of Santa Rosa, HDM)*
- 5–6 foot preferred adjacent to curb and gutter (4 foot min.) or 4 feet more than the gutter pan width.

¹ Studies have shown that marking the parking lane encourages people to park closer to the curb. FHWA. Bicycle Countermeasure Selection System. 2006.
Further Considerations

» On high speed streets (≥ 40 mph) the minimum bike lane should be 6 feet. (HDM 301.2)

» It may be desirable to reduce the width of general purpose travel lanes in order to add or widen bicycle lanes. (HDM 301.2 3)

» On multi-lane streets, the most appropriate bicycle facility to provide for user comfort may be buffered bicycle lanes or physically separated bicycle lanes.

Manhole Covers and Grates:

» Manhole surfaces should be manufactured with a shallow surface texture in the form of a tight, nonlinear pattern

» If manholes or other utility access boxes are to be located in bike lanes within 50 ft. of intersections or within 20 ft. of driveways or other bicycle access points, special manufactured permanent nonstick surfaces are required to ensure a controlled travel surface for cyclists breaking or turning.

» Manholes, drainage grates, or other obstacles should be set flush with the paved roadway. Roadway surface inconsistencies pose a threat to safe riding conditions for bicyclists. Construction of manholes, access panels or other drainage elements should be constructed with no variation in the surface. The maximum allowable tolerance in vertical roadway surface will be 1/4 of an inch.

Materials and Maintenance

Bike lane striping and markings will require higher maintenance where vehicles frequently traverse over them at intersections, driveways, parking lanes, and along curved or constrained segments of roadway.

Bike lanes should also be maintained so that there are no pot holes, cracks, uneven surfaces or debris.

Approximate Cost

The cost for installing bicycle lanes will depend on the implementation approach. Typical costs are $16,000 per mile for restriping.
Buffered Bicycle Lanes

Buffered bike lanes are conventional bicycle lanes paired with a designated buffer space, separating the bicycle lane from the adjacent motor vehicle travel lane and/or parking lane.

Typical Use

» Anywhere a conventional bike lane is being considered.

» While conventional bike lanes are most appropriate on streets with lower to moderate speeds (≤ 25 mph), buffered bike lanes are appropriate on streets with higher speeds (>25mph) and high volumes or high truck volumes (up to 6,000 ADT).

» On streets with extra lanes or lane width.

» Appropriate for skilled adult riders on most streets.

Design Features

A The minimum bicycle travel area (not including buffer) is 5 feet wide.

B Buffers should be at least 2 feet wide. If buffer area is 4 feet or wider, white chevron or diagonal markings should be used. (CA MUTCD 9C-104)

» For clarity at driveways or minor street crossings, consider a dotted line.

» There is no standard for whether the buffer is configured on the parking side, the travel side, or a combination of both.
Further Considerations

- Color may be used within the lane to discourage motorists from entering the buffered lane.
- A study of buffered bicycle lanes found that, in order to make the facilities successful, there needs to also be driver education, improved signage and proper pavement markings. ¹
- On multi-lane streets with high vehicles speeds, the most appropriate bicycle facility to provide for user comfort may be physically separated bike lanes.
- NCHRP Report #766 recommends, when space is limited, installing a buffer space between the parking lane and bicycle lane where on-street parking is permitted rather than between the bicycle lane and vehicle travel lane. ²

Materials and Maintenance

Bike lane striping and markings will require higher maintenance where vehicles frequently traverse over them at intersections, driveways, parking lanes, and along curved or constrained segments of roadway.

Bike lanes should be maintained so that there are no pot holes, cracks, uneven surfaces or debris.

Approximate Cost

The cost for installing buffered bicycle lanes will depend on the implementation approach. Typical costs are $16,000 per mile for restriping. However, the cost of large-scale bicycle treatments will vary greatly due to differences in project specifications and the scale and length of the treatment.

Bicycle Toolbox

One-Way Separated Bikeway

One-way separated bikeways, also known as protected bikeways or cycle tracks, are on-street bikeway facilities that are separated from vehicle traffic. Physical separation is provided by a barrier between the bikeway and the vehicular travel lane. These barriers can include flexible posts, bollards, parking, planter strips, extruded curbs, or on-street parking. Separated bikeways using these barrier elements typically share the same elevation as adjacent travel lanes, but the bikeway could also be raised above street level, either below or equivalent to sidewalk level.

Typical Use

» Along streets on which conventional bicycle lanes would cause many bicyclists to feel stress because of factors such as multiple lanes, high bicycle volumes, high motor traffic volumes (9,000-30,000 ADT), higher traffic speeds (25+ mph), high incidence of double parking, higher truck traffic (10% of total ADT) and high parking turnover.

» Along streets for which conflicts at intersections can be effectively mitigated using parking lane setbacks, bicycle markings through the intersection, and other signalized intersection treatments.

Design Features

A Pavement markings, symbols and/or arrow markings must be placed at the beginning of the separated bikeway and at intervals along the facility based on engineering judgment to define the bike direction. (CA MUTCD 9C.04)

B 7 foot width preferred in areas with high bicycle volumes or uphill sections to facilitate safe passing behavior (5 foot minimum). (HDM 1003.1(1))

C 3 foot minimum buffer width adjacent to parking lines (2 foot minimum when adjacent to travel lanes), marked with 2 solid white (DIB 89, 2015).
Further Considerations

» Separated bikeway buffers and barriers are covered in the CAMUTCD as preferential lane markings (section 3D.01) and channelizing devices (section 3H.01). If the buffer area is 4 feet or wider, white chevron or diagonal markings should be used (section 9C.04). Curbs may be used as a channeling device, see the section on islands (section 3I.01). Grade-separation provides an enhanced level of separation in addition to buffers and other barrier types.

» Where possible, physical barriers such as removable curbs should be oriented towards the inside edge of the buffer to provide as much extra width as possible for bicycle use.

» A retrofit separated bikeway has a relatively low implementation cost compared to road reconstruction by making use of existing pavement and drainage and using a parking lane as a barrier.

» Gutters, drainage outlets and utility covers should be designed and configured as not to impact bicycle travel.

» For clarity at major or minor street crossings, consider a dotted line (CA MUTCD Detail 39A - Bike Lane Intersection Line) for the buffer boundary where cars are expected to cross.

» Special consideration should be given at transit stops to manage bicycle and pedestrian interactions.

Materials and Maintenance

Bikeay striping and markings will require higher maintenance where vehicles frequently traverse over them at intersections, driveways, parking lanes, and along curved or constrained segments of roadway. Green conflict striping (if used) will also generally require higher maintenance due to vehicle wear.

Bikeways should be maintained so that there are no pot holes, cracks, uneven surfaces or debris.

Access points along the facility should be provided for street sweeper vehicles to enter/exit the separated bikeway.

Approximate Cost

Separated bikeway construction costs can vary drastically depending on the type of separation used, the amount of new curb and gutter, stormwater mitigation, and crossing treatments. On the lower end of the scale, construction of a striped parking protected bikeway without delineators or other vertical elements can cost as little as $8,000-$16,000 per mile.
Two-Way Separated Bikeway

Two-Way Separated Bikeways are bicycle facilities that allow bicycle movement in both directions on one side of the road. Two-way separated bikeways share some of the same design characteristics as one-way separated bikeways, but often require additional considerations at driveway and side-street crossings, and intersections with other bikeways.

Typical Use

» Works best on the left side of one-way streets.
» Streets with high motor vehicle volumes and/or speeds.
» Streets with high bicycle volumes.
» Streets with a high incidence of wrong-way bicycle riding.
» Streets with few conflicts such as driveways or cross-streets on one side of the street.
» Streets that connect to shared use paths.

Design Features

A 12 foot operating width preferred (10 ft minimum) width for two-way facility.

» In constrained locations an 8 foot minimum operating width may be considered (HDM 1003.1(1)).

B Adjacent to on-street parking a 3 foot minimum width channelized buffer or island shall be provided to accommodate opening doors (NACTO, 2012) (CA MUTCD 3H.01, 3I.01).

» A separation narrower than 5 feet may be permitted if a physical barrier is present. (AASHTO, 2013)

» Additional signalization and signs may be necessary to manage conflicts.
Two-Way Separated Bikeway

Further Considerations

» On-street bikeway buffers and barriers are covered in the CA MUTCD as preferential lane markings (section 3D.01) and channelizing devices, including flexible delineators (section 3H.01). Curbs may be used as a channeling device, see the section on islands (section 3I.01).

» A two-way separated bikeway on one way street should be located on the left side.

» A two-way separated bikeway may be configured at street level or as a raised separated bikeway with vertical separation from the adjacent travel lane.

» Two-way separated bikeways should ideally be placed along streets with long blocks and few driveways or mid-block access points for motor vehicles.

» See Caltrans Design Information Bulletin No. 89 for more details.

Materials and Maintenance

Bikeway striping and markings will require higher maintenance where vehicles frequently traverse over them at intersections, driveways, parking lanes, and along curved or constrained segments of roadway. Green conflict striping (if used) will also generally require higher maintenance due to vehicle wear.

Bikeways should be maintained so that there are no pot holes, cracks, uneven surfaces or debris.

Access points along the facility should be provided for street sweeper vehicles to enter/exit the separated bikeway.

Approximate Cost

Separated bikeway construction costs can vary drastically depending on the type of separation used, the amount of new curb and gutter, stormwater mitigation, and crossing treatments. On the lower end of the scale, construction of a striped parking protected bikeway with delineators or other vertical elements can cost as little as $15,000-$30,000 per mile.
Lateral Shift

To increase the visibility of bicyclists for turning motorists, a lateral shift in or “bend-in” intersection approach laterally shifts the separated bikeway immediately adjacent to the turning lane.

Typical Use

» Bikeways separated by a visually intensive buffer or on-street parking.

» Where it is desirable to create a curb extension at intersections to reduce pedestrian crossing distance.

» Where space is not available to bend-out the bikeway prior to the intersection.

Design Features

A At least 20 ft prior to an intersection, provide between 20 – 40 ft of length to shift the bikeway closer to motor vehicle traffic.

B Where the separated bikeway uses parked cars within the buffer zone, parking must be prohibited at the start of the transition.

» Place a “Turning Vehicles Yield to Bikes” sign (modified MUTCD R10-15) prior to the intersection.

» Optional - Provide a narrow buffer with vertical delineators between the travel and lane and bikeway to increase comfort for bicycle riders and slow driver turning speed.
Further Considerations

» The design creates an opportunity for a curb extension, to reduce pedestrian crossing distance. This curb extension can also create public space which can be used bike parking corrals, bikeshare stations, parklets, public art exhibits, and/or stormwater features such as bioswales.

» Can be paired with intersection crossing markings such as green colored pavement to raise awareness of conflict points.

Materials and Maintenance

Bikeway striping and markings will require higher maintenance where vehicles frequently traverse over them at intersections, driveways, parking lanes, and along curved or constrained segments of roadway. Green conflict striping (if used) will also generally require higher maintenance due to vehicle wear.

Bikeway should be maintained so that there are no pot holes, cracks, uneven surfaces or debris.

Approximate Cost

The costs of the lateral shift or protected intersection elements vary depending on materials used and degree of implementation desired. Inexpensive materials can used, such as paint, concrete planters, and bollards.
Protected Intersection

A protected intersection, or “Bend Out” uses a collection of intersection design elements to maximize user comfort within the intersection and promote a high rate of motorists yielding to people bicycling. The design maintains a physical separation within the intersection to define the turning paths of motor vehicles, slow vehicle turning speed, and offer a comfortable place for people bicycling to wait at a red signal.

Typical Use

» Streets with separated bikeways protected by wide buffer or on-street parking.

» Where two separated bikeways intersect and two-stage left-turn movements can be provided for bicycle riders.

» Helps reduce conflicts between right-turning motorists and bicycle riders by reducing turning speeds and providing a forward stop bar for bicycles.

» Where it is desirable to create a curb extension at intersections to reduce pedestrian crossing distance.

Design Features

A Setback bicycle crossing of 19.5 feet allows for one passenger car to queue while yielding. Smaller setback distance is possible in slow-speed, space constrained conditions.

B Corner island with a 15-20 foot corner radius slows motor vehicle speeds. Larger radius designs may be possible when paired with a deeper setback or a protected signal phase, or small mountable aprons. Two-stage turning boxes are provided for queuing bicyclists adjacent to corner islands.

C Use intersection crossing markings.
Protected intersections feature a corner safety island and intersection crossing markings.

Protected intersections incorporate queuing areas for two-stage left turns.

Further Considerations

» Pedestrian crosswalks may need to be further set back from intersections in order to make room for two-stage turning queue boxes.

» Wayfinding and directional signage should be provided to help bicycle riders navigate through the intersection.

» Colored pavement may be used within the corner refuge area to clarify use by people bicycling and discourage use by people walking or driving.

» Intersection approaches with high volumes of right turning vehicles should provide a dedicated right turn only lane paired with a protected signal phase. Protected signal phasing may allow different design dimensions than are described here.

Materials and Maintenance

» Green conflict striping (if used) will also generally require higher maintenance due to vehicle wear.

» Bikeways should be maintained so that there are no pot holes, cracks, uneven surfaces or debris.

» Bikeways protected by concrete islands or other permanent physical separation, can be swept by street sweeper vehicles with narrow widths.

Approximate Cost

The cost of protected intersection elements vary depending on materials used and degree of implementation desired.

» Complete reconstruction costs comparable to a full intersection.

» Retrofit implementation may be possible at lower costs if existing curbs and drainage are maintained. Inexpensive materials can used, such as paint, concrete planters, and bollards.
Separated Bicycle Signal Phase

Separated bicycle lane crossings of signalized intersections can be accomplished through the use of a bicycle signal phase which reduces conflicts with motor vehicles by separating bicycle movements from any conflicting motor vehicle movements. Bicycle signals are traditional three lens signal heads with green, yellow and red bicycle stenciled lenses.

Typical Use

» Two-way protected bikeways where contraflow bicycle movement or increased conflict points warrant protected operation.

» Bicyclists moving on a green or yellow signal indication in a bicycle signal shall not be in conflict with any simultaneous motor vehicle movement at the signalized location.

» Right (or left) turns on red should be prohibited in locations where such operation would conflict with a green bicycle signal indication.

Design Features

A An additional “Bicycle Signal” sign should be installed below the bicycle signal head.

B Designs for bicycles at signalized crossings should allow bicyclists to trigger signals via pushbutton, loop detectors, or other passive detection, to navigate the crossing.

» On bikeways, signal timing and actuation shall be reviewed and adjusted to consider the needs of bicyclists. (CA MUTCD 9D.02)
A bicycle signal head at a signalized crossing creates a protected phase for cyclists to safely navigate an intersection.

A bicycle detection system triggers a change in the traffic signal when a bicycle is detected.

Further Considerations

» A bicycle signal should be considered for use only when the volume/collision or volume/geometric warrants have been met. *(CA MUTCD 4C.102)*

» The Federal Highway Administration (FHWA) has approved bicycle signals for use, if they comply with requirements from Interim Approval 16 (I.A. 16). Bicycle Signals are not approved for use in conjunction with Pedestrian Hybrid Beacons.

» Bicyclists typically need more time to travel through an intersection than motor vehicles. Green light times should be determined using the bicycle crossing time for standing bicycles.

» Bicycle detection and actuation systems include user-activated buttons mounted on a pole, loop detectors that trigger a change in the traffic signal when a bicycle is detected and video detection cameras, that use digital image processing to detect a change in the image at a location.

Materials and Maintenance

Bicycle signal detection equipment should be inspected and maintained regularly, especially if detection relies on manual actuation. Pushbuttons and loop detectors will tend to have higher maintenance needs than other passive detection equipment.

Approximate Cost

Bicycle signal heads have an average cost of $12,800.

Video detection camera system costs range from $15,000 to $25,000 per intersection.
Separated Bikeway Barriers

Separated bikeways may use a variety of vertical elements to physically separate the bikeway from adjacent travel lanes. Barriers may be robust constructed elements such as curbs, or may be more interim in nature, such as flexible delineator posts.

Typical Use

Appropriate barriers for retrofit projects:
- Parked Cars
- Flexible delineators
- Bollards
- Planters
- Parking stops

Appropriate barriers for reconstruction projects:
- Curb separation
- Medians
- Landscaped Medians
- Raised protected bike lane with vertical or mountable curb
- Pedestrian Refuge Islands
Raised separated bikeways are bicycle facilities that are vertically separated from motor vehicle traffic.

Design Features

» Maximize effective operating space by placing curbs or delineator posts as far from the through bikeway space as practicable.

» Allow for adequate shy distance of 1 to 2 feet from vertical elements to maximize useful space.

» When next to parking allow for 3 feet of space in the buffer space to allow for opening doors and passenger unloading.

» The presences of landscaping in medians, planters and safety islands increases comfort for users and enhances the streetscape environment.

Further Considerations

» Separated bikeway buffers and barriers are covered in the CA MUTCD as preferential lane markings (section 3D.01) and channelizing devices (section 3H.01). Curbs may be used as a channeling device, see the section on islands (section 3I.01).

» With new roadway construction a raised separated bikeway can be less expensive to construct than a wide or buffered bicycle lane because of shallower trenching and sub base requirements.

» Parking should be prohibited within 30 feet of the intersection to improve visibility.

Materials and Maintenance

Separated bikeways protected by concrete islands or other permanent physical separation, can be swept by smaller street sweeper vehicles.

Access points along the facility should be provided for street sweeper vehicles to enter/exit the separated bikeway.

Approximate Cost

Separated bikeway barrier material costs can vary greatly, depending on the type of material, the scale, and whether it is part of a broader construction project.
Separated Bikeways at Driveways (and Minor Streets)

The added separation provided by separated bikeways creates additional considerations at intersections and driveways when compared to conventional bicycle lanes. Special design guidelines are necessary to preserve sightlines and denote potential conflict areas between modes, especially when motorists turning into or out of driveways may not be expecting bicycle travel opposite to the main flow of traffic.

At driveways and crossings of minor streets, bicyclists should not be expected to stop if the major street traffic does not stop.

Typical Use

» Along streets with separated bikeway where there are intersections and driveways.
» Higher frequency driveways or crossings may require additional treatment such as conflict markings and signs.

Design Features

» Remove parking to allow for the appropriate clear sight distance before driveways or intersections to improve visibility. The desirable no-parking area is at least 30 feet from each side of the crossing.
» Use colored pavement markings and/or shared line markings through conflict areas at intersections.
» If a raised bikeway is used, the height of the lane should be maintained through the crossing, requiring automobiles to cross over.
> Motor vehicle traffic crossing the bikeway should be constrained or channelized to make turns at sharp angles to reduce travel speed prior to the crossing.

> Driveway crossings may be configured as raised crossings to slow turning cars and assert physical priority of travelling bicyclists.

> Motor vehicle stop bar on cross-streets and driveways is setback from the intersection to ensure that drivers slow down and scan for pedestrians and bicyclists before turning.

Materials and Maintenance

Green conflict striping and markings, will require higher maintenance where vehicles frequently traverse over them at driveways and minor intersection. Green conflict striping (if used) will also generally require higher maintenance due to vehicle wear.

Approximate Cost

The cost for installing high visibility colored crossing markings will depend on the materials selected and implementation approach. Typical costs range from $1.20/sq. ft. installed for paint to $14/sq. ft. installed for Thermoplastic. Colored pavement is more expensive than standard asphalt installation, costing 30-50% more than non-colored asphalt.

Further Considerations

> Removing obstructions and providing clear sight distance at crossings increases visibility of bicyclists.

> Treatments designed to constrain and slow turning motor vehicle traffic will slow drivers to bicycle-compatible travel speeds prior to crossing the separated bikeway.
Separated Bikeways at Transit Side Boarding Islands

A transit side boarding island is a channelized lane for bicyclists designed to provide a path for bicyclists to pass stopped transit vehicles, and clarify interactions between pedestrians, bicyclists, and passengers, boarding and alighting.

This is particularly helpful on corridors with high volumes of transit vehicles and bicyclists, where “leapfrogging” may occur, and on separated bikeway corridors where maintaining physical separation is important to maintain user comfort.

Typical Use

» Routes where bike lanes or separated bikeways and transit operations overlap.

» Provides an in-lane stop for buses, reducing delay at stops.

» Median refuge also provides a shorter crossing for pedestrians at intersections

Design Features

A Pedestrian median refuge island (optional) shortens the crossing distance at intersections.

B Pedestrian ramp into crosswalks should be ADA compliant with detectable warning surfaces.

C Direct pedestrians to crossing locations to minimize conflicts between modes.

D High volume stops should have room for appropriately sized shelters and transit amenities.
Further Considerations

» Transit island should be wide enough to accommodate mobility devices. An 8’x5’ accessible clear space is required at the front door per ADA requirements.

» Transit platforms should feature pedestrian scale lighting.

» Side boarding island will require detectable warning surfaces along full length of platform if greater than 6” high.

Materials and Maintenance

Similar to median refuge islands, side boarding islands may require frequent maintenance of road debris. If at street grade, the bikeway can be swept by street sweeper vehicles with narrow widths.

Approximate Cost

The approximate cost of a side boarding island is similar to median refuge islands ranging from $500 to $1,100 per foot, or about $3,500 to $4,000, depending on the design, and site conditions. This cost is exclusive of transit shelters and amenities, landscaping, and lighting.
Bicycle Toolbox

Bicycle Box

A bicycle box is an experimental treatment, designed to provide bicyclists with a safe and visible space to get in front of queuing traffic during the red signal phase. Motor vehicles must queue behind the white stop line at the rear of the bike box. On a green signal, all bicyclists can quickly clear the intersection. This treatment is currently under experiment, and has not been approved by Caltrans.

Typical Use

» At potential areas of conflict between bicyclists and turning vehicles, such as a right or left turn locations.

» At signalized intersections with high bicycle volumes.

» At signalized intersections with high vehicle volumes.

» Not to be used on downhill approaches to minimize the right hook threat potential during the extended green signal phase.

Design Features

A 14 foot minimum depth from back of crosswalk to motor vehicle stop bar. *(NACTO, 2012)*

B A “No Turn on Red” *(CA MUTCD R10-11)* or “No Right Turn on Red” *(CA MUTCD R13A)* sign shall be installed overhead to prevent vehicles from entering the Bike Box. (Refer to CVC 22101 for the signage) A “Stop Here on Red” *(CA MUTCD R10-6)* sign should be post mounted at the stop line to reinforce observance of the stop line.

C A 50 foot ingress lane should be used to provide access to the box.

» Use of green colored pavement is recommended.
A bike box allows for cyclists to wait in front of queuing traffic, providing high visibility and a head start over motor vehicle traffic.

Further Considerations
- This treatment positions bicycles together and on a green signal, all bicyclists can quickly clear the intersection, minimizing conflict and delay to transit or other traffic.
- Pedestrian also benefit from bike boxes, as they experience reduced vehicle encroachment into the crosswalk.
- Bike boxes are currently under experiment in California. Projects will be required to go through an official Request to Experiment process. This process is outlined in Section 1A.10 in the CAMUTCD, and jurisdictions must receive approval prior to implementation.

Materials and Maintenance
Bike boxes are subject to high vehicle wear, especially turning passenger vehicles, buses, and heavy trucks. As a result, bike boxes with green coloring will require more frequent replacement over time. The life of the green coloring will depend on vehicle volumes and turning movements, but Thermoplastic is generally a more durable material than paint.

Approximate Cost
Costs will vary due to the type of paint or thermoplastic used and the size of the bike box, as well as whether the treatment is added at the same time as other road treatments.

Typical costs range from $1.20/sq. ft. installed for paint to $14/sq. ft. installed for Thermoplastic.
Colored Pavement Treatment

Colored pavement within a bicycle lane may be used to increase the visibility of the bicycle facility, raise awareness of the potential to encounter bicyclists, and reinforce priority of bicyclists in conflict areas.

Typical Use

» Within a weaving or conflict area to identify the potential for bicyclist and motorist interactions and assert bicyclist priority.

» Across intersections, driveways and Stop or Yield-controlled cross-streets.

» At bike boxes and two-stage turn boxes

Design Features

A Typical white bike lane striping (solid or dotted 6" stripe) is used to outline the green colored pavement.

B In weaving or turning conflict areas, preferred striping is dashed, to match the bicycle lane line extensions.

» The colored surface should be skid resistant and retro-reflective (MUTCD 9C.02.02).

» In exclusive use areas, such as bike boxes, color application should be solid green.
Green colored conflict striping indicates the path of travel of people on bicycles, and alerts people intending to turn across the bike lane to yield when bicyclists are present. Pictured left: green conflict striping on Santa Rosa Ave.

Further Considerations

» Green colored pavement shall be used in compliance with FHWA Interim Approval (FHWA IA-14.10).¹

» While other colors have been used (red, blue, yellow), green is the recommended color in the US.

» The application of green colored pavement within bicycle lanes is an emerging practice. The guidance recommended here is based on best practices in cities around the county.

Materials and Maintenance

As intended, paint or thermoplastic are placed in locations that are trafficked by vehicles, and are subject to high vehicle wear. Colored pavement treatments will experience higher rates of wear at locations with higher turning vehicles, buses, and heavy trucks. At these locations, green coloring will require more frequent replacement over time.

The life of the green coloring will depend on vehicle volumes and turning movements, but thermoplastic is generally a more durable material than paint.

Approximate Cost

The cost for installing colored pavement markings will depend on the materials selected and implementation approach. Typical costs range from $1.20/sq. ft installed for paint to $14/sq. ft installed for thermoplastic. Colored pavement is more expensive than standard asphalt installation, costing 30-50 percent more than non-colored asphalt.

¹ FHWA. Interim Approval for Optional Use of Green Colored Pavement for Bike Lanes (IA-14). 2011.
Chapter 4

Mixed Use Toolbox
Shared Use Path

Shared use paths are off-street facilities that can provide a desirable transportation and recreation connection for users of all skill levels who prefer separation from traffic. They often provide low-stress connections to local and regional attractions that may be difficult, or not be possible on the street network.

Typical Use

- In abandoned rail corridors (commonly referred to as Rails-to-Trails or Rail-Trails.
- In active rail corridors, trails can be built adjacent to active railroads (referred to as Rails-with-Trails.
- In utility corridors, such as powerline and sewer corridors.
- In waterway corridors, such as along canals, drainage ditches, rivers, and creeks.
- Along roadways.

Design Features

- **8 ft** is the minimum width (with 2’ ft shoulders) allowed for a two-way bicycle path and is only recommended for low traffic situations. ([Caltrans Design Manual](#))
- **10 ft** is recommended in most situations and will be adequate for moderate to heavy use.
- **12 ft** is recommended for heavy use situations with high concentrations of multiple users. A separate track (5’ minimum) can be provided for pedestrian use.
Lateral Clearance

» A 2 ft or greater shoulder on both sides of the path should be provided. An additional ft of lateral clearance (total of 3’) is required by the MUTCD for the installation of signage or other furnishings.

» If bollards are used at intersections and access points, they should be colored brightly and/or supplemented with reflective materials to be visible at night.

Overhead Clearance

Clearance to overhead obstructions should be 8 ft minimum, with 10 ft recommended.

Striping

» When striping is required, use a 4 inch dashed yellow centerline stripe with 4 inch solid white edge lines.

» Solid centerlines can be provided on tight or blind corners, and on the approaches to roadway crossings.

Further Considerations

» The provision of a shared use path adjacent to a road is not a substitute for the provision of on-road accommodation such as paved shoulders or bike lanes, but may be considered in some locations in addition to on-road bicycle facilities.

» To reduce potential conflicts in some situations, it may be better to place one-way sidepaths on both sides of the street.

» The design of the trail should conform to Crime Prevention Through Environmental Design (CPTED) principles. CPTED is a framework that encourages intuitive visual cues to guide path users, increase the visibility of the corridor and adjacent landmarks and properties, careful design that indicates active use and upkeep, and manages conflicting uses, and regular maintenance to prevent improper or illegal uses.

Materials and Maintenance

Shared use paths must be regularly maintained so that they are free of potholes, cracks, root lift, and debris. Signage and lighting should also be regularly maintained to ensure shared use path users feel comfortable, especially where visibility is limited.

Adjacent landscaping should be regularly pruned, to allow adequate sightlines, daylight, and pedestrian-scale lighting, and so as not to obstruct the path of travel of trail users.

Approximate Cost

The cost of a shared use path can vary, but typical costs are between $65,000 per mile to $4 million per mile. These costs vary with materials, such as asphalt, concrete, boardwalk and other paving materials, lighting, and ROW acquisition.
Sidepath Design

A sidepath is a bidirectional shared use path located immediately adjacent and parallel to a roadway. Sidepaths can offer a high-quality experience for users of all ages and abilities.

Typical Use

Sidepaths should be considered where one or more of the following conditions exist:

- The adjacent roadway has relatively high volume and/or high-speed motor vehicle traffic that might discourage many people bicycling from riding on the roadway to achieve the targeted low stress. Sidepaths do not preclude the installation or maintenance of existing bike lanes.
- Along corridors with few intersections with minor streets and driveways.
- To provide continuity between existing segments of shared use paths.
- For use near schools, neighborhoods, and mixed use commercial areas, where increased separation from motor vehicles is desired, and there are few roadway and driveway crossings.

Design Features

- Sidepaths shall be designed to meet transportation standards as defined by AASHTO, PROWAG, and MUTCD.
- Materials: Asphalt is the standard paving material for sidepaths.
- Minimum Width: Minimum width of a sidepath is 10’. Where user volumes are high, additional width, as well as parallel facilities such as bike lanes and sidewalk can provide needed space.
- Roadway Separation: The preferred minimum roadway separation width is 6.5 - 16.5’ (Schepers, 2011). Absolute minimum separation width of 5’ (AASHTO Bike Guide 2012, p. 5-11).
- Roadway Separation: Separation from roadway traffic is an essential design feature of sidepaths. Separation should increase as volumes and speed of adjacent roadway increase (AASHTO Bike Guide 2012, p. 5-11).
Horizontal Clearance: A lateral clearance to landscaping, street furnishings and signs is required. MUTCD identifies minimum clearance. Signs and other street furniture should be placed outside of the minimum path width.

Vertical Clearance: Standard clearance to overhead obstructions is 10’.

Cross Slope and Running Slope: As sidepaths are typically located within public rights of way, their designs are governed by ADA guidelines.

Materials and Maintenance

Like shared use paths, sidepaths must be regularly maintained so that they are free of potholes, cracks, root lift, and debris. Signage and lighting should also be regularly maintained to ensure sidepath users feel comfortable, especially in areas where visibility is limited.

Adjacent landscaping should be regularly pruned, to allow adequate sightlines along the path and at minor street crossings and driveways, allow for daylight, and pedestrian-scale lighting, and so as not to obstruct the path of travel of trail users.

Approximate Cost

The cost of a sidepath can vary, but typical costs are similar to shared use paths between $65,000 per mile to $4 million per mile. These costs vary with materials, such as asphalt, concrete, boardwalk, and other paving materials, and ROW acquisition.