Table of Contents

1. Introduction .. 1–1
 1.1. Location and Planning Area................................. 1-2
 1.2. Project Objectives and Process 1-2
 1.3. Report Organization .. 1-4

2. Land Use and Development 2–1
 2.1. Existing Land Uses .. 2-2
 2.2. Densities and Intensities 2-4
 2.3. Recent Development Activity 2-7
 2.4. Lot Size and Ownership Patterns 2-15
 2.5. Opportunity Areas and Infill Potential 2-15
 2.6. Applicable Plans and Regulations 2-18
 2.7. Key Findings and Considerations 2-26

3. Urban Form and Design 3–1
 3.1. Introduction ... 3-2
 3.2. Urban Form and Design by Subarea 3-5
 3.3. Key Findings and Planning Considerations 3-25

4. Historic Resources 4–1
 4.1. Historic Context of Downtown Santa Rosa 4-2
 4.2. Designated Historic Resources 4-4
 4.3. Regulatory Framework for Historic Resources 4-14
 4.4. Key Findings and Planning Considerations 4-21

5. Mobility and Transportation 5–1
 5.1. Street Network .. 5-2
 5.2. Traffic Conditions ... 5-4
 5.3. Street Network Opportunities 5-11
 5.4. Transit ... 5-13
 5.5. Pedestrian and Bicycle Network 5-14
 5.6. Parking ... 5-26
 5.7. Key Findings and Planning Considerations 5-27

6. Infrastructure and Utilities 6–1
 6.1. Water Supply and Distribution 6-3
 6.2. Sanitary Sewer System 6-4
 6.3. Storm Drain System .. 6-7
 6.4. Key Findings and Planning Considerations 6-9

7. Environmental Considerations 7–1
 7.1. Geology and Soils ... 7-2
 7.2. Hazardous Materials 7-15
 7.3. Hydrology and Flooding 7-29
 7.4. Key Findings and Planning Considerations 7-36
1. INTRODUCTION
This Existing Conditions Report provides baseline information on existing conditions, opportunities, and challenges in the Downtown Santa Rosa Specific Plan area (planning area) to inform the Downtown Santa Rosa Specific Plan (DSASP) Update.

1.1 Location and Planning Area

Santa Rosa is located in central Sonoma County, about 55 miles north of San Francisco. The planning area covers approximately 720 acres surrounding the Downtown Station SMART site in the heart of Santa Rosa. The planning area is bounded by College Avenue to the north, Brookwood Avenue to the east, Sebastopol Road and Highway 12 to the south, and Dutton Avenue and Imwalle Gardens to the west. As part of the DSASP Update, the eastern boundary has been expanded to be consistent with the General Plan’s definition of the downtown core.

The planning area encompasses several established neighborhoods, including Courthouse Square, Railroad Square, Maxwell Court, SOFA, and several established residential neighborhoods, including many that are designated preservation districts. In addition, the entire Downtown Station Area planning area is classified as a Priority Development Area (PDA), an area that has been identified by Bay Area communities as areas for investment, new homes and job growth. See Figure 1-1 for a map of the city and the location of the planning area.

1.2 Project Objectives and Process

Originally adopted in 2007, a key purpose of the Santa Rosa Downtown Station Area Specific Plan (DSASP) is to increase the number of residents and employees within walking distance of the Sonoma Marin Area Rail Transit (SMART) site through the intensification of land uses in the planning area. The 2007 Specific Plan envisioned that 3,409 new residential units and 493,000 square feet of new office, retail and institutional uses would be constructed by 2027. However, halfway through the planning period, only 100 housing units and 194,000 square feet of office, retail, and institutional uses have been developed, with an additional 275 housing units and 107,000 square feet of office, retail, and institutional uses approved, but not yet constructed. As an area capable of accommodating density and providing new housing options, successful downtown development is an essential part of addressing the urgent housing need created by the housing crisis and devastating loss of homes to the 2017 wildfires.

The City of Santa Rosa in undertaking an update to the DSASP in order to explore options for addressing the community’s unmet housing needs as well as land use, transportation, economic development, and historic preservation issues associated with the intensification of housing development downtown.

The project includes the following objectives:

- Actively involve the public in updating the Plan through a comprehensive community involvement strategy.
- Revisit the land use plan and policy framework of the existing Plan to accommodate increased housing density downtown along with other transit-supportive uses and improvements.
- Improve motorized, non-motorized, and transit connectivity between the SMART station site, the Downtown Transit Mall, and existing and future adjacent commercial, residential, educational, and governmental areas.
- Develop and implement urban design standards which promote walkable and livable environments within the planning area.
Figure 1.1 Citywide Context

- Park
- SMART Rail
- Undercrossing

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Specific Plan Update Process

The Specific Plan Update planning process will include the following four phases, with robust and diverse methods of community engagement occurring during all phases:

1. **Identification of Issues and Opportunities.** An intensive "deep-dive" to identify and understand stakeholder priorities and concerns, and to establish a coordinated and realistic direction for the future of the planning founded on community vision.

2. **Alternatives and Preferred Plan.** Based on the results of the visioning exercises and background research, the planning team will prepare and analyze a series of alternative design concepts. After additional public outreach and decision-maker input, the options will be narrowed to a single “Preferred Plan.”

3. **Draft Specific Plan and Environmental Review.** Based on the Preferred Plan, a public review draft of the Specific Plan Update will be prepared along with an Environmental Impact Report (EIR) that analyzes the effects of Specific Plan policies and development potential on the environment.

4. **Adoption.** Following a public review period, a revised Specific Plan Update will be presented to the Planning Commission and the City Council for adoption at public hearings.

1.3 Report Organization

This Existing Conditions Report describes the planning area’s existing land use patterns, regulatory framework, urban form, transportation and infrastructure networks, and environmental hazards. It seeks to identify issues and opportunities within Downtown Santa Rosa, so that the community may better envision potential for future development. Chapters in the report are organized by topic as follows:

- **Chapter 1: Introduction** describes the planning area and its regional setting, outlines the objectives of the Specific Plan and the planning process, and provides an overview of the report’s organization.

- **Chapter 2: Land Use and Development** discusses existing land uses in the planning area, allowable development densities and intensities, property ownership information and the future plans of current property owners, major development projects in the planning area and its vicinity, and related plans and regulations.

- **Chapter 3: Urban Form and Design** examines the existing character of the planning area, including the scale and character of its blocks and buildings, as well as the site’s topography, views, and street design.

- **Chapter 4: Historic Resources** describes downtown Santa Rosa’s historic context and known historic resources.

- **Chapter 5: Mobility and Transportation** provides an overview of downtown Santa Rosa’s roadway system and traffic analysis, public transit accessibility, pedestrian and bike network, and parking facilities.

- **Chapter 6: Infrastructure and Utilities** describes the planning area’s water, wastewater, and storm water infrastructure.

- **Chapter 7: Environmental Considerations** discusses major environmental constraints that should be addressed in updating the Plan, including geologic hazards, noise levels, flooding hazards and hazardous materials.

Analysis in each chapter is communicated through text, tables, photographs, diagrams, and maps. In addition, each chapter concludes with a brief summary of key planning issues and implications, which will serve as a bridge to the next phase of the planning effort – development and analysis of alternative concepts.
2. LAND USE AND DEVELOPMENT
This chapter documents the existing land use and regulatory context of the planning area, including existing land use patterns, densities and intensities, land ownership patterns, recent development activity, and applicable plans and regulations.

2.1 Existing Land Uses

The total area of land in the planning area is approximately 720 acres, including an additional 70 acres between E Street and Brookwood Avenue added with the eastward expansion of the 2007 planning area boundary. The distribution of existing land uses within the planning area – i.e., how land is currently used today – is shown on Figure 2.1. Table 2.1 provides a breakdown of existing land uses, based on data from the Sonoma County Assessor.

Residential uses account for 183.6 acres or 25 percent of the land within the planning area, concentrated primarily in established neighborhoods. There is a relatively even split between the area developed with single-family land uses and that developed with multi-family uses. In general, multi-family residential land uses are interspersed throughout the residential neighborhoods, although there are two sizable new multi-family developments at the northwest corner of West Third Street and Dutton Avenue, and several smaller multifamily developments clustered along Sonoma Avenue in the southeastern portion of the planning area.

Commercial land uses, including retail and office uses, account for 138 acres, or 19 percent of the land in the planning area. These are primarily concentrated in the core of the planning area around Courthouse Square, Railroad Square, the Santa Rosa Plaza Mall, and east of E Street as well as corridors like Santa Ros Avenue and College Avenue. These areas include a mix of bars, restaurants, retail stores, and hotels depending on the location. Courthouse Square typically contains locally-serving restaurants, banks, and large offices. Railroad Square has a mixture of uses that cater more towards tourists, like hotels, shops, bars, and restaurants, while containing some small offices. Santa Rosa Plaza Mall

<table>
<thead>
<tr>
<th>Existing Land Use Categories</th>
<th>Acres*</th>
<th>Percent of Total*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>183.6</td>
<td>25%</td>
</tr>
<tr>
<td>Single Family</td>
<td>102.6</td>
<td>14%</td>
</tr>
<tr>
<td>Multi-Family</td>
<td>80.9</td>
<td>11%</td>
</tr>
<tr>
<td>Commercial</td>
<td>137.9</td>
<td>19%</td>
</tr>
<tr>
<td>Industrial</td>
<td>53.5</td>
<td>7%</td>
</tr>
<tr>
<td>Light Industrial</td>
<td>25.0</td>
<td>3%</td>
</tr>
<tr>
<td>Heavy Industrial</td>
<td>9.8</td>
<td>1%</td>
</tr>
<tr>
<td>Industrial Warehouse</td>
<td>18.7</td>
<td>3%</td>
</tr>
<tr>
<td>Public / Institutional</td>
<td>52.3</td>
<td>7%</td>
</tr>
<tr>
<td>Parking</td>
<td>24.8</td>
<td>3%</td>
</tr>
<tr>
<td>Open Space / Recreation</td>
<td>43.9</td>
<td>6%</td>
</tr>
<tr>
<td>Vacant</td>
<td>20.0</td>
<td>3%</td>
</tr>
<tr>
<td>Right-of-Way (includes roads, railroad, and non-parceled land)</td>
<td>204.0</td>
<td>28%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>720.0</td>
<td>100%</td>
</tr>
</tbody>
</table>

Sonoma County Assessor; Dyett & Bhatia, 2018.
Figure 2.1 Existing Land Use

- Single Family Residential
- Multi Family Residential
- Commercial
- Light Industrial
- Industrial
- Public / Institutional
- Parks and Open Space
- Right-of-Way
- Vacant

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Downtown Station Area Specific Plan Update
DRAFT Existing Conditions Report

Land Use and Development

has regionally-serving retail and a variety of chain restaurants and shops. East of E Street has a variety of small-scale shops and offices as well as a few medical facilities and banks. Santa Rosa Avenue, although many parcels are vacant, contains auto-oriented businesses like body shops and vehicle sales as well as other locally-serving retail. College Avenue commercial uses are mostly small-scale offices, although some auto-oriented businesses like gas stations and body shops are present.

Industrial land uses, representing seven percent of the planning area, are generally located adjacent to the railway tracks west of US 101. The Maxwell Court area in the northwest of the planning area contains a number of active industrial and light industrial uses, including businesses engaged in manufacturing, equipment sales and service, and automotive repairs. In June 2019, the BoDean Asphalt Plant announced that it was relocating out of the area, providing an opportunity for redevelopment of the six-acre site it occupies. Further south below Highway 12 is the industrial and commercial area of Roberts Avenue. Whereas Maxwell Court has active manufacturing businesses, the industrial uses in Roberts Avenue consists of auto body shops, vacant land, and commercial at the corner of Sebastopol Road and Dutton Avenue. In between Maxwell Court and Roberts Avenue along the railway tracks are a number of large warehouses and other industrial uses.

Institutional land uses make up 52 acres, or seven percent of the planning area. This includes a variety of public or semi-public land uses, like churches, museums, schools, and branches of government. Some examples include Santa Rosa City Hall, the Postal Service, the US Internal Revenue Service, Santa Rosa Middle School, Saint Rose Catholic Church, the Museum of Sonoma County, the Sonoma County Library, and the Santa Rosa Police Department. There is also nearly 25 acres of parking lots, or three percent of the planning area, which are generally accessible to the public.

Vacant land makes up 20 acres or approximately three percent of the planning area. Several large sites account for a large portion of the vacant land in the planning area, including the SMART site west of the Downtown Station between West Third and West Sixth Streets (7.9 acres) and several properties in the east of the planning area around Imwalle Gardens (12.1 acres). One of these – 713 West Third Street - is approved for residential development and under construction as of October 2019.

Open space and recreation account for another 44 acres or seven percent of the planning area and are generally spread throughout downtown. These parcels include a variety of parks and open spaces, including major community focal points, like Old Courthouse Square plaza, Juilliard Park, and the Santa Rosa Creek Trail, along with neighborhood parks like Luther Burbank Home and Gardens, Fremont Park, and Olive Park.

The remainder of the planning area consists of right-of-way, including public streets, sidewalks, and the railway line.

2.2 Densities and Intensities

Residential density is a measure of development intensity that represents the number of dwelling units in a given land area. Like most California communities, Santa Rosa has established minimum and maximum numbers of dwelling units per acre for various types of neighborhoods throughout the city in its general plan. In the planning area residential densities range from 1.2 du/ac to upwards of 35 du/ac, with the average density of the planning area approximately 15.8 units per acre. With 77 units on 0.32 acres of land, Rosenberg Apartments at Fourth Street and Mendocino Avenue is one of the highest density housing projects at 240 du/ac. These densities are generally in line with other medium-density residential neighborhoods in station-oriented cities found in Sonoma County, like Windsor and Petaluma.

Figure 2.2 shows the existing residential density throughout Downtown Santa Rosa and Figure 2.3 shows the current allowable density under the 2007 Specific Plan. The difference in these maps show where develop-
Figure 2.2 Existing Residential Density in Downtown Santa Rosa

Residential Density
- 1 to 8 DU/acre
- 8 to 13 DU/acre
- 13 to 18 DU/acre
- 18 to 30 DU/acre
- Greater than 30 DU/acre

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Figure 2.3: Maximum Permitted Residential Density Per Land Use Designation

Max Dwelling Units Per Acre (DU/ac)
- 8 DU/ac
- 13 DU/ac
- 18 DU/ac
- 30 DU/ac
- 40 DU/ac
- 60 DU/ac

Undercrossing
SMART Rail

Note: Residential densities are permitted in the Retail and Business Services land use and are individually determined by the City through subdivision or land use permit approval.

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
ment has or has not occurred, showing that most of the areas designated for the most density—Railroad Square, the SMART Station, Santa Rosa Avenue, and industrial properties—have not been developed since adoption of the 2007 Specific Plan. In addition, residential properties in the Low Residential land use designation have a maximum density of 8 du/acs which does not reflect the existing residential density which could be much higher, sometimes at 18 to 30 du/acs or more.

For commercial, office, industrial, and mixed use uses, floor area ratio (FAR), is typically used as a standard for building intensity throughout California and the U.S. FAR represents the ratio of a project’s total building space in relation to lot size (see Figure 2.4). It is calculated by dividing the total building square footage a by the area of the lot.

The building intensity of existing residential and non-residential development in the planning area is shown in Figure 2.5, with the maximum FAR of 4.5. Buildings with higher FARs are typical for downtown areas as more of the land is utilized with taller buildings. For example, most buildings on Santa Rosa Avenue have FARs less than 0.5 because of their small building footprints, large parking lots and lower slung strip mall development. In comparison, the building at 100 B Street is three stories tall and takes up most of the lot, resulting in a higher FAR of 3.0. Non-residential buildings in the planning area have a median FAR of 0.29. More than a third of non-residential buildings have a FAR of less than 1.5.

2.3 Recent Development Activity

As of October 2019, thirteen development projects are under review, permitted, or under construction within the planning area. The location and description of all current developments in the planning area is illustrated in Figure 2.6 and summarized in Table 2.2. As listed in Table 2.2, there are a total of 579 dwelling units that have been approved with 497 of them as multifamily units. There are an additional 209 multifamily units that are in progress of being reviewed by the City. In terms of non-residential development, there is a total of 114,679 square feet in progress or approved by the City within the planning area, of which 42,580 square feet do not have a residential component associated with the project.

Although there is a pipeline of nearly 788 units that are approved or pending, actual development and construction of projects is a much larger and complex issue. The 2007 DSASP projected to have 3,409 residential units built by 2027, which equates to around 170 dwelling units per year being added to the housing stock. However, only 100 dwelling units have been built in the planning area since 2007. In terms of non-residential development, which includes office, retail, and institutional uses, the 2007 DSASP projected 493,500 square feet of development by 2027. The construction of non-residential development has fared better, with nearly 40 percent of the 2027 projected area has been constructed.

Representative Project Profiles

The projects listed below offer a brief look into some development opportunities and challenges about what has or has not worked in terms of construction and development within the planning area. A reoccurring theme behind some of these projects is that they were approved in 2008.
Figure 2.5 Residential and Commercial Built Floor Area Ratio (FAR) in Downtown Santa Rosa

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Figure 2.6 Location of Major Development Projects

<table>
<thead>
<tr>
<th>No.</th>
<th>Project Description</th>
<th>Units/sq ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>888 4th Street Apartments</td>
<td>107 units</td>
</tr>
<tr>
<td>2</td>
<td>Art House</td>
<td>21 units</td>
</tr>
<tr>
<td>3</td>
<td>420 Mendocino</td>
<td>104 units</td>
</tr>
<tr>
<td>4</td>
<td>Deturk Village</td>
<td>128 units</td>
</tr>
<tr>
<td>5</td>
<td>Dutton Village</td>
<td>185 units; 20,000 sq ft commercial/recreational</td>
</tr>
<tr>
<td>6</td>
<td>College Station</td>
<td>9,000 sq ft retail</td>
</tr>
<tr>
<td>7</td>
<td>Pullman Lofts</td>
<td>72 units; 4,600 sq ft retail</td>
</tr>
<tr>
<td>8</td>
<td>Courthouse Square Hotel</td>
<td>24,580 sq ft</td>
</tr>
<tr>
<td>9</td>
<td>Dutton Flats</td>
<td>41 units</td>
</tr>
<tr>
<td>10</td>
<td>Avenue 320 Apartments</td>
<td>40 units</td>
</tr>
<tr>
<td>11</td>
<td>Gardens Subdivision</td>
<td>82 units</td>
</tr>
<tr>
<td>12</td>
<td>College Avenue Apartments</td>
<td>8 units</td>
</tr>
<tr>
<td>13</td>
<td>Spinster Inn</td>
<td>9,000 sq ft</td>
</tr>
</tbody>
</table>

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
<table>
<thead>
<tr>
<th>Project</th>
<th>Type</th>
<th>Location</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutton Flats</td>
<td>Multifamily, 100% affordable</td>
<td>208 W 3rd St</td>
<td>In progress</td>
<td>1.03 acres; 41 units</td>
</tr>
<tr>
<td>Avenue 320 Apartments</td>
<td>Adaptive reuse from Office to Multifamily dwelling</td>
<td>320 College Avenue</td>
<td>In progress</td>
<td>0.63 acres; 40 units</td>
</tr>
<tr>
<td>Caritas Village</td>
<td>Multifamily dwelling and support services</td>
<td>465 A Street</td>
<td>In progress</td>
<td>2.78 acres; 128 units; 41,290 sq ft support and services</td>
</tr>
<tr>
<td>Gardens Subdivision</td>
<td>Single Family Dwelling</td>
<td>713 W 3rd St</td>
<td>Approved</td>
<td>10.23 acres; 82 units</td>
</tr>
<tr>
<td>College Avenue Apartments</td>
<td>Multifamily dwelling</td>
<td>542 College Ave</td>
<td>Approved</td>
<td>8 units</td>
</tr>
<tr>
<td>888 Fourth Street Apartments</td>
<td>Multifamily dwelling/General Retail</td>
<td>891 3rd Street</td>
<td>Approved</td>
<td>0.74 acres; 107 units; 2,600 retail</td>
</tr>
<tr>
<td>Art House</td>
<td>Multifamily dwelling/General Retail</td>
<td>620 7th Street</td>
<td>Approved</td>
<td>0.2 acres; 21 units; 2,000 retail</td>
</tr>
<tr>
<td>420 Mendocino</td>
<td>Multifamily dwelling</td>
<td>420 Mendocino Ave</td>
<td>Approved</td>
<td>0.48 acres; 106 Units</td>
</tr>
<tr>
<td>Pullman Lofts</td>
<td>Multifamily dwelling/retail</td>
<td>701 Wilson St</td>
<td>Approved</td>
<td>1.83 acres; 72 units; 4600 sq ft retail</td>
</tr>
<tr>
<td>Deturk Village and Deturk Winery Village</td>
<td>Multifamily dwelling/commercial recreational</td>
<td>8 W 9th Street</td>
<td>Deturk Village: Approved Deturk Winery Village: In Progress</td>
<td>3.43 acres; 185 units; 20,000 sq ft commercial recreational</td>
</tr>
<tr>
<td>College Station</td>
<td>Drive through</td>
<td>80 College Ave</td>
<td>Approved</td>
<td>9,000 sq ft retail</td>
</tr>
<tr>
<td>Spinster Inn</td>
<td>Hotel</td>
<td>.407 S A St</td>
<td>Approved</td>
<td>9,000 sq ft</td>
</tr>
<tr>
<td>Courthouse Square Hotel</td>
<td>Hotel</td>
<td>25 Old Courthouse Square</td>
<td>Approved</td>
<td>24,580 sq ft</td>
</tr>
</tbody>
</table>
and, due to the economic recession, were on-hold until recently. In general, this is a good sign that the Santa Rosa market is recovering from the recession and an indication that future development could be continued.

420 Mendocino

Project description:

420 Mendocino is a six-story, mixed-use housing project with 106 units and ground floor retail space. The site is located about a block away from Old Courthouse Square and is in the heart of downtown Santa Rosa. It was approved in 2018 and slated for occupancy in 2020.

Development Opportunities and Challenges:

420 Mendocino is proof of Santa Rosa’s efforts to spur development within the downtown area. This project was one of the first to benefit from these efforts and went through the Resilient City Design Review Process, which included various incentive such as a streamlined approval by reducing the Design Review Board process from ten months to three and an expedited permit process.

888 Fourth Street

Project description:

Initially approved in 2008 and then reapproved in 2017, the 888 Fourth Street project involves the construction of a seven-story mixed-use building comprising of 107 residential units on the upper six floors, and a residential lobby, services, fitness room, commercial space, an outdoor pool, and a parking garage at the street level. While the site was rezoned by City Council to allow for a seven-story building, the rest of the surrounding neighborhood is mostly one to two stories in height.

Development Opportunities and Challenges:

The project was brought before the planning commission again on April 11, 2019 in order to approve a Conditional Use Permit to increase the building height from the allowed 95-feet limit up to 112-feet. This height increase was due to the conversion of subterranean parking to ground-level parking. This was due to the developer realizing that subterranean parking did not pencil out and would be too expensive to proceed. This project, if constructed, would be a successful attempt of the City attracting infill development to the downtown area and proof that tall residential mixed-use buildings are feasible. The challenge, as shown by the necessity to build additional stories, the 10 year plus construction cycle, and the inability to provide underground parking, is the high costs of development and ensuring that these types of mixed-use developments are able to pencil-out in downtown Santa Rosa.

Art House

Project description:

The Art House is a five-story, 21-unit residential mixed-use and live-work project in Downtown Santa Rosa. The project is under construction as of August 2019 and anticipated completion date is early to mid-2020. The project was initially approved in 2008.

Development Opportunities:

The Art House project is unique in that it incorporates an art gallery and provides housing for artists under the live/work category. Since the project is under construction, it is proof that development is possible downtown and is economically feasible. Plus, in a news article in The Press Democrat, this project is said to be one of the first developments in Santa Rosa to take advantage of federally mandated “opportunity zones” which could be appealing to other developers looking to build downtown.
DeTurk Winery Village

Project description:

DeTurk Winery Village is a mixed-use development proposal with 185 apartments, of which 15 will be designated to very low-income occupants and will retain approximately 20,000 square feet of existing commercial space. The project site is located on the old DeTurk Winery at 806 Donahue Street and 8 W. 9th Street, adjacent to the SMART train tracks.

Development Opportunities and Challenges:

One of the biggest challenges behind developing the DeTurk Winery Village is the balance between historic preservation and high-density housing. Although initial development of the site was approved in 2008, the current project wasn’t under review until 2017 when a joint body of the Design Review Board and Cultural Heritage Board effectively denied Preliminary Design Review of the project due to lack of consensus. The Cultural Heritage Board also denied an application for a Landmark Alteration to the site. Then, the applicant appealed to City Council to overrule the lower board’s decision. In January 2017, the City Council agreed and overruled both the Design Review Board and Cultural Heritage Board and approved moving forward with the project. Currently, the project is still under review, with a portion of the project listed as DeTurk Village (shown in Table 2.2) approved. The opportunities of the project include a potential to jump start development on industrial, underutilized land that is close to the SMART station and, if done correctly, could serve as a good example on how to balance high density with historic preservation.

Pullman Lofts

Project description:

Pullman Lofts is a proposed mixed-use development with 72 apartment units, 3,440 square feet of community area, and a 2,142 square foot community/retail commercial space located at the former Law Yeager Lumber Yard at 701 Wilson Street. The building at the corner of Wilson Street and 8th Street is considered historic and will be kept as part of the redevelopment of the site. The project was initially approved in 2015 and went back to Design Review approval in February 2018.

Development Opportunities and Challenges:

The project has gone back to Design Review Board multiple times over the last few years in order to approve modifications to the design. This could indicate that the project didn’t pencil out in 2015 and design changes had to be made. Similar to 888 Fourth Street, the developer eliminated below grade parking which indicates that underground parking is still not financially feasible. Another challenge was found in an article published in The Press Democrat on February 18, 2019 which mentions that the developer of Pullman Lofts was resolving an insurance issue which further delayed the project. The opportunity of this project is similar to the DeTurk Winery Village, in which the redevelopment of a vacant industrial parcel into a transit-oriented development could help revitalize the area and bring infill housing in proximity to the SMART station area.

The Cannery

Project description:

The Santa Rosa Cannery was approved in 2008 as a 93-unit housing project and was part of a larger mixed-use development vision for the SMART station area.

Development Opportunities and Challenges:

The primary challenge of this project was the ability to secure funding and dealing with the complexities of the previously industrial site. With the Great Recession in 2008 and abolishment of redevelopment agency funding in 2012, capital for the initial Cannery development fell through
and the project was halted. According to the March 2018 Citywide Summary of Pending Development reported by the City of Santa Rosa, the project was deemed inactive, which means that there was no activity in the two years since last City staff review. The opportunities of the site include developing high-density housing directly around the SMART station, environmental remediation of a previously industrial site, and historic preservation of the original century-old cannery walls.

Barriers and Incentives for High-Density Multifamily Housing

Two reports finished late 2018 looked at some of the barriers and solutions towards developing high-density infill housing in Sonoma County and Santa Rosa. The first report, completed by Keyser Marston Associates, took a critical look at the impact of high city fees and provided sample pro-formas for different development types. This report found that high-density residential development currently faces challenges due to high development costs and the inability to project future apartment rent growth to offset rising costs. The report concluded that even if the Park and Capital Facilities impact fees were completely waived, the estimated development profit would still fall at or below the lower end of the targeted profit range, making it less appealing for developers to pursue projects. However, the report noted that reducing fees in addition to other incentives could create a positive impact and increase the likelihood that projects can move forward.

The second report called “Accelerating Infill in Santa Rosa & Sonoma County” was published by the Council of Infill Builders and came up with four key barriers and seven near-term priority solutions to incentivize high-density multifamily housing development. According to the report, the four most common key barriers that generally limit infill opportunities include:

1. **Market uncertainty** due to unknown demand for infill in key cities and urban areas in Sonoma County.

 2. **Lack of demonstrated viability** and financing for infill and car-free living.

 3. **Lack of policy and process commitment** to support infill development.

 4. **High costs** and fees to build infill.

 In response to these barriers, the report recommended the following seven near-term priority solutions to help incentivize development:

 1. **Pilot projects with public partnership** with possible concessions regarding fees, land purchase, and streamlined entitlements.

 2. **Rent guarantees** for employees from employers to boost demand for infill.

 3. A Joint Powers Agency (JPA)/Renewal Enterprise District (RED) to **guide and fund infill development**.

 4. **Zoning, parking requirement, and development fee reforms** to encourage rather than stymie infill development.

 5. **Improved availability of public sector infill financing** and enhanced access to sales and use taxes.

 7. A **market study and project development navigator** to help streamline infill investment and deployment.

Some of these solutions are already in play, including federal opportunity zone designation for downtown which allows for special financing, State legislature that supports CEQA streamlining abilities for infill development, and local-level initiatives like the expedited Resilient City Design Review Process. Other opportunities to remove development barriers could be examined throughout the DSASP planning process as well.
2.4 Lot Size and Ownership Patterns

Large parcels and clusters of smaller parcels under common ownership generally represent the best opportunities for redevelopment. While a fifth of the planning area’s land is parceled into smaller individually-owned lots in established residential neighborhoods, there are several larger lots that offer important opportunities for housing development. Figure 2.7 shows where some of the largest property owners are throughout the downtown area, several of which own adjacent parcels. West of Dutton Avenue, the Imwalle family owns three parcels, totaling a combined 25 acres. The cluster of parcels owned by Cachita, LLC near Maxwell Court and those owned by New Maxwell, LLC total 4.7 acres and 4.6 acres, respectively; each offer opportunity for significant redevelopment.

Additionally, the City owns a cumulative total of 24.9 acres of land in the planning area, including relatively larger parcels in the central business district. These parcels include the City Hall site, the Public Safety Building at Sonoma Boulevard and Brookwood, and several centrally located surface parking lots in the Courthouse Square area. As part of a strategy to catalyze redevelopment downtown, the City could sell these parcels or pursue redevelopment through a public private partnership. The seven parcels that comprise the Santa Rosa Plaza mall total 31 acres and are owned by four different entities. Should the owners of these parcels elect to redevelop, the mall properties represent a significant redevelopment opportunity given their location and size.

2.5 Opportunity Areas and Infill Potential

Opportunity Areas are locations where significant physical change is foreseeable downtown. These are areas with clusters of vacant and underutilized parcels that present an opportunity for redevelopment. The term underutilized refers to properties where the value of the land is worth more than the buildings and structures on it, giving the owner and incentive to redevelop with new uses that command higher rents or sales prices. As discussed above, large parcels and City-owned parcels also present opportunities, particularly when located adjacent to vacant and underutilized land. Figure 2-8 shows opportunity areas downtown.

As shown, there are eight distinct Opportunity Areas downtown:

- Courthouse Square,
- Santa Rosa Avenue,
- Roberts Avenue,
- SMART Station area,
- Wilson-Donahue,
- Maxwell Court, and
- College Avenue.
Figure 2.7 Ownership of Large Parcels and City-Owned Parcels in Downtown Santa Rosa

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Figure 2.8 Vacant Land, Underutilized Parcels, City Property, and Opportunity Areas

- **Vacant**
- **Underutilized**
- **City Property**
- **Opportunity Area**

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
2.6 Applicable Plans and Regulations

This section describes land use plans and regulations applicable in the planning area.

Santa Rosa General Plan 2035

The Santa Rosa General Plan establishes a vision and action plan for the city’s long-term development. The plan outlines goals and policies to encourage balanced development that conserves and revitalizes established neighborhoods and commercial areas, while promoting mixed-use and transit-supportive developments.

The General Plan also includes the following goals related to the planning area land use:

- LUL-C Maintain downtown as the major regional office, financial, civic, and cultural center in the North Bay, and a vital mixed-use center.
- LUL-D Foster compact, vibrant, and continuous retail at the core of downtown.
- LUL-L Ensure land uses that promote use of transit.
- LUL-M Ensure new development and streetscape projects provide pedestrian and bicycle circulation improvements.
- LUL-N Provide funding for public services and utilities in the planning area.
- LUL-O Provide recreational and cultural facilities for visitors and residents of the specific planning area.

The General Plan incorporates land use designations from the Downtown Station Area Specific Plan, described below.

Santa Rosa Downtown Station Area Specific Plan

Originally adopted in 2007, the DSASP describes a vision for downtown as an energetic commercial and cultural center with a range of housing, employment, retail and restaurant options in a vibrant, walkable environment. The DSASP aims to enhance distinct identity and character, encourage a diverse mix of uses, incorporate transit-oriented development, and create additional pedestrian-friendly connections through a range of supportive policies and standards. The DSASP also specifies allowed land uses and intensities, and introduced two new land use designations: Transit Village Medium and Transit Village Mixed Use.

The DSASP land use categories are as follows and their distribution throughout the planning area is shown in Figure 2.9:

- Low Density Residential: Single-family residential development at a density of 2.0 to 8.0 units per gross acre is allowed in this classification, which is primarily intended for detached single-family dwellings. Attached single-family and multi-family units may be permitted.
- Medium Low Density Residential: Housing at densities from 8.0 to 13.0 units per gross acre is allowed in this classification, which is intended for attached single-family residential development. Single-family detached housing and multifamily development may be permitted. Development at the midpoint of the density range is desirable but not required.
- Medium Density Residential: Housing at densities from 8.0 to 18.0 units per gross acre is allowed in this classification, which permits a range of housing types, including single-family attached and multifamily developments, and is intended for specific areas where higher density is appropriate. Development at the midpoint of the density range or higher is required. Single-family detached housing is not permitted.
Figure 2.9 Santa Rosa Downtown Station Area Specific Plan 2007 Land Use

- Low Residential
- Medium-Low Residential
- Medium Residential
- Medium-High Residential
- Transit Village Medium
- Transit Village Mixed Use
- Retail and Business Service
- Retail/Medium Residential
- Office
- Office/Medium Residential
- General Industry
- Light Industrial/Med Residential
- Public/Institutional
- Parks/Recreation

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
• Transit Village Medium: This classification is intended to accommodate mixed-use development within approximately one-half mile of a transit facility. Development should transition from less intense uses at the outlying edges to higher intensity uses near the transit facility. Residential uses are required, and ground floor neighborhood serving retail and live-work uses are encouraged. Housing densities range from 25.0 to 40.0 units per gross acre.

• Transit Village Mixed Use: This classification is intended to accommodate a well-integrated mix of higher intensity residential, office and commercial uses within one-quarter mile of a transit facility. Development is designed and oriented to create a central node of activity at or near the transit facility. Housing densities range from 40.0 to 60.0 units per gross acre.

• Retail and Business Services: This classification allows retail and service enterprises, offices, and restaurants. Regional centers, which are large complexes of retail and service enterprises anchored by one or more full line department stores, and destination centers, which are retail centers anchored by discount or warehouse stores, are allowed. (While housing is not a specified use in the land use designation, it is permitted under the zoning code.)

• Office: This classification provides sites for administrative, financial, business, professional, medical and public offices.

• Light Industry: This classification accommodates light industrial, warehousing and heavy commercial uses. Uses appropriate to this land use category include auto repair, bulk or warehoused goods, general warehousing, manufacturing/assembly with minor nuisances, home improvement retail, landscape materials retail, freight or bus terminals, research oriented industrial, accessory offices, and employee-serving commercial uses, and services with large space needs, such as health clubs. Professional office buildings are not permitted.

• Public/Institutional: This classification allows for an area or cluster of governmental or semi-public facilities, such as utility facilities, government office centers, etc. New facilities may be appropriate in any land use category based on need and subject to environmental review.

• Parks and Recreation: This classification allows for neighborhood and community parks, recreation complexes, golf courses and creeks.

Zoning Code

The Santa Rosa Zoning Code, included as Title 20 of the Municipal Code, controls the physical development of land and the kinds of uses allowed on each individual property in the planning area. The Zoning Code implements the General Plan, providing specific requirements for lots size, building placement, density of development, and height in addition to regulating allowable uses. In all, there are 13 primary zoning districts applicable in the planning area and three combining districts. Primary districts prescribe the base types of land uses, activities, and dimensional requirements. All properties within the City and the planning area are assigned to a primary district. Combing districts apply to certain properties and prescribe additional conditions over and above those that apply in the underlying primary district in order to address specific concerns such as public safety or historic resource protection. It is not unusual for a single property to have one or more combining zoning districts in addition to its primary zoning district.

Table 2-3 describes the primary zoning districts applicable in the planning area and Figure 2-10 shows their spatial distribution. Figure 2-11 shows the applicability of combining districts and a summary of each is provided below.

The Historic (-H) Combining District applies to all properties within designated preservation districts. This combining district is intended to recognize, preserve, and enhance Santa Rosa’s locally designated historic resources. It establishes character defining elements for each preserva-
Figure 2.10 Santa Rosa Zoning Code Designations

Residential District
- Single-Family Residential (R-1)
- Single-Family Residential/Multi-Family Residential (R-1/R-3)
- Medium Density Multi-Family Residential (R-2)
- Multi-Family Residential (R-3)
- Transit Village-Residential (TV-R)

Commercial Districts
- Office Commercial (CO)
- Neighborhood Commercial (CN)
- General Commercial (CG)
- Downtown Commercial (CD)
- Transit Village-Mixed (TV-M)

Industrial District
- Light Industry (IL)

Special Purpose Districts
- Planned Development (DP)
- Public/Institutional (PI)
- Open Space--Recreation (OSR)

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Figure 2.11 Santa Rosa Zoning Code Combining Districts

Combining Districts
- Historic (-H)
- Station Area (-SA)
- Historic-Station Area (-H-SA)
- Limited Light Industrial (-LIL)
- Station Area-Limited Light Industrial (-SA-LIL)

Source: MTC, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Table 2.3: Descriptions of Santa Rosa Zoning Code Designations

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family Residential (R1)</td>
<td>The R-1 zoning district is applied to areas of the City intended to be maintained as residential neighborhoods comprised of detached and attached single-family houses, clustered residential hillside projects, and small multi-family projects, together with compatible accessory uses. The maximum allowable density ranges from two to 13 dwellings per acre, with the specific allowable density for each parcel shown on the zoning map by a numerical suffix to the R-1 map symbol (see Section 20-22.040). The R-1 zoning district implements and is consistent with the Residential—Very Low Density (where residential clustered on hillsides is desirable), Low Density/Open Space, Low Density, and Medium Low Density land use classifications of the General Plan.</td>
</tr>
<tr>
<td>Medium Density Multi-Family Residential (R2) and Multi-Family Residential (R3)</td>
<td>The R-2 and R-3 zoning districts are applied to areas of the City appropriate for residential neighborhoods with medium and higher residential densities, to provide home rental and ownership opportunities, and to provide a full range of choices in housing types to improve access to affordable housing. The maximum allowable density ranges from eight to 30 dwellings per acre, with the specific allowable density for each parcel shown on the zoning map by a numerical suffix to the R-3 map symbol (see Section 20-22.040). Densities of more than 30 dwellings per acre may be allowed within the Mixed Use land use designation of the General Plan. The R-2 and R-3 zoning districts implement and are consistent with the Residential—Medium Density and Medium High Density land use classifications of the General Plan.</td>
</tr>
<tr>
<td>Neighborhood Commercial (CN)</td>
<td>The CN zoning district is applied to areas within and adjacent to residential neighborhoods appropriate for limited retail and service centers for convenience shopping. Uses in these centers are intended to provide for the day-to-day needs of local neighborhoods and workplaces, but not to be of such scope and variety as to attract substantial traffic volumes from outside the neighborhood. New development is encouraged to include both a residential and nonresidential component as noted by Section 20-23.030 (Commercial Land Uses and Permit Requirements). The CN zoning district is consistent with and implements the Neighborhood Shopping Center land use classification of the General Plan.</td>
</tr>
<tr>
<td>Downtown Commercial (CD)</td>
<td>The CD zoning district is applied to the Santa Rosa downtown, to provide for a mixture of ground-floor pedestrian-oriented shops, personal and business services, restaurants, and other office and commercial uses that serve the entire City and/or neighborhoods surrounding the downtown. Large and small grocery store uses are permitted in this district. Residential units may be developed in either a freestanding project, or incorporated into a mixed use project. The CD zoning district is consistent with and implements the Mixed Use and Retail and Business Services land use classifications of the General Plan.</td>
</tr>
<tr>
<td>Office Commercial (CO)</td>
<td>The CO zoning district is applied to areas appropriate for administrative, business, financial, medical, professional, and public office uses, together with similar and related compatible uses. Residential uses may also be accommodated as part of mixed use projects. The CO zoning district is consistent with and implements the Office land use classification of the General Plan.</td>
</tr>
<tr>
<td>General Commercial (CG)</td>
<td>The CG zoning district is applied to areas appropriate for a range of retail and service land uses that primarily serve residents and businesses throughout the City, including shops, personal and business services, and restaurants. Residential uses may also be accommodated as part of mixed use projects, and independent residential developments. The CG zoning district is consistent with the Retail and Business Services land use classification of the General Plan.</td>
</tr>
</tbody>
</table>
Table 2.3: Descriptions of Santa Rosa Zoning Code Designations

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Village- Residential (TV-R)</td>
<td>The TV-R zoning district is applied to areas within approximately one-half mile of a transit facility that is appropriate for mixed use development. Development should transition from less intense uses at the outlying edges to higher intensity uses near the transit facility. Residential uses are required, and ground floor neighborhood serving retail and live-work uses are encouraged. The maximum allowable density ranges from 25 to 40 dwellings per acre. The TV-R zoning district is consistent with and implements the Transit Village Medium land use classification of the General Plan.</td>
</tr>
<tr>
<td>Transit Village-Mixed (TV-M)</td>
<td>The TV-M zoning district is applied to areas within approximately one-quarter mile of a transit facility that is appropriate for a mix of higher density residential, office and commercial uses. Development is designed and oriented to create a central node of activity at or near the transit facility. The minimum allowable density is 40 dwellings per acre; there is no maximum density. The TV-M zoning district is consistent with and implements the Transit Village Mixed Use land use classification of the General Plan.</td>
</tr>
<tr>
<td>Public/Institutional (PI)</td>
<td>The PI zoning district is applied to areas appropriate for public facilities, utilities, hospitals, and public assembly facilities including: public schools, libraries, government offices, etc. The PI zoning district is consistent with and implements the Public/Institutional land use designation of the General Plan.</td>
</tr>
<tr>
<td>Light Industrial (IL)</td>
<td>The IL zoning district is applied to areas appropriate for some light industrial uses, as well as commercial service uses and activities that may be incompatible with residential, retail, and/or office uses. Residential uses may also be accommodated as part of work/live projects. The IL zoning district is consistent with the Light Industry land use classification of the General Plan.</td>
</tr>
<tr>
<td>Planned Development (PD)</td>
<td>The PD district is intended to recognize the advantage that integrated community offers over conventional zoning techniques in implementing General Plan goals through specific site developments. The PD district is specifically envisioned as a mechanism to preserve and/or create distinctive, high quality, single or mixed use developments that meet or exceed the goals of the General Plan. The requirements of this district are intended to encourage preservation of existing amenities and creation of new amenities; provide for a variety of housing types and densities; and achieve superior relationships among uses, both within and surrounding the district. The PD district is intended to be used only where the other zoning districts established by this Zoning Code cannot achieve these goals.</td>
</tr>
<tr>
<td>Open Space-Recreation (OSR)</td>
<td>The OSR zoning district is applied to public park and recreation sites and areas within the City. The OSR zoning district is consistent with and implements the Parks & Recreation land use classification of the General Plan.</td>
</tr>
<tr>
<td>Transit Area Combining District (SA)</td>
<td>The SA combining district is intended to enhance and reinforce distinctive characteristics within the Downtown and North Santa Rosa Station Area Specific Planning areas and create environments that are comfortable to walk in.</td>
</tr>
</tbody>
</table>

Source: Santa Rosa City Code, Division 2 Zoning Districts and Allowable Land Uses.
tion district and it stipulates that no structures shall exceed a maximum height of 35 feet or 2 stories, unless the Cultural Heritage Board (given review authority under Chapter 20-58 of the Municipal Code) finds that increased height does not detract from the character of the preservation district or any adjacent contributing properties. It allows for a reduction of setbacks established in the primary zone only where specific findings can be made. More information on each specific preservation district’s character and location in the planning area can be found in Chapter 4 of this report, Historic Resources.

The Limited Light Industrial (-LIL) combining district applies to industrial properties within Maxwell Court. This combining district is intended to allow properties to maintain industrial uses while also allowing the uses permitted in the primary zoning district, Transit-Village Residential. Allowed uses under this combining district include light/artisan/craft manufacturing, storage, live/work units, multi-family dwellings, and other light industrial uses. It establishes a height limit of 55 feet as well as front, rear and side setbacks. Maximum lot coverage is determined by the reviewing authority. The -LIL combining district was established as a temporary measure subsequent to adoption of the 2007 DSASP. It will be reconsidered by the Council after January 1, 2020.

The Station Area (-SA) combining district applies to many of the commercial and industrial properties throughout the planning area, including most of Courthouse Square, Maxwell Court, and Railroad Square. This combining district is intended to enhance and reinforce distinctive characteristics within the Downtown and North Santa Rosa Station Area Specific Planning areas and create environments that are comfortable to walk in. Within this combining district, eight separate street typologies are established with differing requirements for height, ground floor uses, and building placement. Compatibility with existing development is emphasized within the combining district, subject to the discretion of the review authority (principally the Design Review Board or Cultural Heritage Board).

In addition, Chapter 20-16 of the Zoning Code outlines short-term Resilient City Development Measures intended fast-track housing development to address housing needs and economic development following the Tubbs and Nuns fires of October 2017. The measure allows most residential uses by-right throughout most of the planning area, with the exception of properties located east of E Street that were not included in the 2007 DSASP. Further, design review is for new development and major remodels is delegated to the Zoning Administrator, with the exception of projects located in the H-combining district. The Resilient City Development Measure was established as a temporary measure following the fires in 2017. It expires on May 11, 2021.

Creeks Master Plan (2007, Updated 2013)

The Citywide Creek Master Plan presents a set of creek-related policies and recommendations for habitat preservation, enhancement, restoration projects, and other site-specific improvements to the nearly one hundred miles of creeks that flow through Santa Rosa. The purpose of the 2013 update was to recognize completed projects and changed conditions along creeks, incorporate additional creeks and rename certain existing creeks for consistency with other agencies, and to establish a new prioritization system for creek projects. The Creeks Master Plan includes 11 goals and associated objectives and policies related to habitats; storm water; economic; open space; recreation; education; aesthetics; water quality; private property; health and safety; and cultural resources. The Creeks Master Plan also makes specific recommendations for the Santa Rosa and Matanzas Creek Watersheds, located in the planning area.

The Creeks Master Plan requires that development adjacent to waterways be consistent with the Creeks Master Plan to the extent feasible, including by encouraging creek-compatible land uses, creek access throughout the system, integrating development project features with creek improvements, and allowing for future creek improvements to be made. It requires that all developments adjacent to creeks follow certain
requirements in the Santa Rosa Creek Design Guidelines Manual, including for site planning, grading, creek crossings, architecture, pathways, landscaping, and fencing.

Santa Rosa Avenue Corridor Plan (2011)
Approved in 2011, the Santa Rosa Avenue Corridor Plan provides a comprehensive and long-term vision for this corridor and surrounding area, including recommendations for capital improvements and design guidelines. The Corridor boundaries are wholly contained within the 2007 DSASP planning area, which envisioned the Corridor as a place where “new development will provide a shared identity for these two neighborhoods and enable new connections across Santa Rosa Avenue.” The DSASP also emphasized a mixed-use area with housing and retail uses allowed throughout. At the same time, the DSASP recognized that the Corridor is an area in transition and included provisions for existing nonconforming uses to operate in the interim. The Plan presents the recommendations and solutions that make up the Streetscape Design, with the goals of improving access, circulation, and safety for pedestrians, bicyclists and vehicles throughout the Corridor, creating a safe and walkable corridor; uniting the surrounding neighborhoods; and celebrating the adjacent neighborhoods’ unique character. Specific recommendations include reconfiguring the roadway; creating Class II bicycle lanes; limiting roadway access and reducing parking; widening sidewalks; and making other improvements for pedestrian safety.

Growth Management Program
The City’s Growth Management Ordinance, Chapter 21-03 of the Municipal Code, places a limit on the number of allotments that can be granted annually. The allotment allows the issuance of a building permit, granted by the Director of Community Development at the time of a project’s final discretionary approval. For the period 2014 to 2020, 850 allotments are available annually. From 2021 to 2022, 800 allotments are available annually. Allotments are granted in the year requested by the project developer if they are available. If no allotments are available, the allotments are issued in the next year they are available, and the developer receives allotments in the desired year when they become available. To ensure allotments for many projects, single-family projects may receive no more than 75 allotments per year; the multifamily maximum is 200 per year.

2.7 Key Findings and Planning Considerations

- The basic land use pattern of the planning area consists of a mix of residential, commercial, office, retail, industrial, and entertainment uses. Established residential neighborhoods area located within easy walking distance of the city’s central business district around Courthouse Square and the SMART station in Railroad Square. The mix of uses and their relative proximity makes for good walkability.

- There are several clusters of large, vacant parcels in the Imwalle area and in industrial areas adjacent to the railway tracks that can accommodate significant new development to address unmet housing need in the community. Additionally, the City owns numerous parcels in the central business district around Courthouse Square, many of which are currently used for surface or structured parking, that could potentially be redeveloped with housing and other uses.

- Average existing floor area ratio (FAR) in the planning area is 0.41, which is lower than in other downtowns of a comparable size. Along Santa Rosa Avenue and in industrial areas where there are low-slung buildings surrounded by surface parking, FARs range from 0.10 to 0.29. This is an indicator of infill development potential.

- Together, vacant and underutilized properties in the planning area have capacity for residential development that far exceeds...
regional projections for housing demand downtown. Plan Bay Area projects a need for 3,400 housing units downtown, but vacant and underutilized sites alone can accommodate more than 15,000 units.

- Established residential neighborhoods include a mix of single-family detached homes and small-scale apartments. The average density is 15.8 dwelling units per acre in these neighborhoods; however, the Low Residential designation that applies has a maximum density of 8 units per acre. This means that the City’s standards are calling for development that is generally less dense than what is currently built today.

- The Retail and Business Services land use designation applies on 117 acres of land in the planning area, including in the core area around Courthouse Square. This designation does not explicitly allow housing, although the underlying zoning does permit residential development. There is an opportunity to revise the land use designations to more clearly signal the desired mix of uses downtown as part of the DSASP Update.

- Current zoning includes a variety of primary and combining districts that establish an array of overlapping requirements for height, setbacks, and building placement. The provisions of the primary zone are often subject to limitations in one or more combining districts and the resulting complexity makes it challenging to understand what can actually be developed on a given parcel. There is an opportunity with the DSASP update to simplify and streamline provisions for development.

- The existing growth management program could be a limiting factor for downtown housing development. The program currently caps the total number of multifamily housing permits that can be issued in a given year to 800 citywide and further allows only 200 units in any single development during the same period. Construction of 350 new units per year would be needed to achieve a total of 7,000 new units in the planning area over a 20-year period.
3. URBAN FORM AND DESIGN
3.1 Introduction

This chapter describes the existing urban form of the planning area and highlights opportunities for urban design improvements. It describes the structure of the planning area as well as the existing characteristics of physical form, including scale and height; block size and lot pattern; streetscapes; connectivity; and focal points. Historic character is discussed in Chapter 4 of this report. Figure 3.1 illustrates the downtown structure and Figure 3.2 shows the building footprints and blocks for the planning area.

Downtown Structure

The urban structure of the planning area is defined largely by the transportation infrastructure and the creeks that run through it (see Figure 3.1). US 101 bisects the area in a north-south direction, separating the two principal downtown commercial districts, the central business district around Courthouse Square to the east and the historic commercial core around Railroad Square to the west. The railway tracks further divide the planning area in a north-south direction, generally flanked by industrial development that separates residential areas on either side from one another. Highway 12 generally forms the southern boundary of the planning area, although an elevated segment of this roadway separates development on Sebastopol Road from the rest the planning area, with connections via underpasses at Dutton, Olive Street, and the railway tracks.

Topography and Views Overview

The topography of the area is generally flat and slopes gently toward the southwest. Ground elevations range from approximately 140 feet above sea level at the western boundary of the planning area, to 175 feet at the eastern boundary, to its highest point along Highway 12 in the south, 185 feet above sea level.

The General Plan identifies and protects views of the Sonoma Mountains as an important scenic resource. Given the location the planning area on relatively flat terrain in the Sonoma Valley and the extent of existing development, views of the Sonoma Mountains from the planning area are limited; however, views of the Mountains are available looking south along E Street in the downtown area. The General Plan also identifies two scenic roads which offer direct views to areas of exceptional beauty, natural resources, or landmarks of historic and cultural interest within the planning area: the full length of US 101 and the segment of Highway 12 west of US 101 to Fulton Road. Within the planning area, the 2007 Downtown Station Area Specific Plan identifies the historic water tower in Railroad Square as an important scenic resource and includes policies to protect views of it from Fourth Street. Located on the SMART site west of the tracks, the water tower has been dismantled to preserve its structural integrity, though it is still located on site.

View of the Sonoma Mountain hillside looking down Second and E Street.
Figure 3.1 Downtown Structure

- Activity Hub
- Corridors and Gateways
- Prince Memorial Greenway/ Joe Redota Trail
- SMART Train
- Planning Area

Existing Land Use:
- Single Family Residential
- Multifamily Residential
- Commercial
- Public/Institutional
- Light Industrial
- Industrial
- Open Space/Recreation
- Vacant
Figure 3.2 Building Footprints

- Building Footprint
- Park/Open Space
- School
- SMART Train
- Planning Area
3.2 Urban Form and Design by Subarea

Downtown Santa Rosa is made up of commercial, industrial and residential areas. For each, a description of the scale and height, block size and lot pattern, streetscape, connections and barriers, and any parks and plazas are described in this section.

Commercial Areas

Commercial districts in the planning area include Courthouse Square, Railroad Square, Santa Rosa Plaza Mall, East of E Street, Santa Rosa Avenue, and College Avenue. Key elements of urban form in each are described below.

Courthouse Square

Widely recognized as the City’s central business district, the Courthouse Square subarea is generally bounded by Seventh Street, B Street, E Street (including parcels that face on both sides of the street), and Santa Rosa Creek, with parts of Mendocino Avenue that share similar characteristics with the rest of Courthouse Square as shown in Figure 3.3 Courthouse Square. The street grid in this area is generally compact and rectilinear with blocks typically sized 200 feet by 500. Parcels size vary depending on when buildings were built, older buildings have narrower and small lots, ranging from 5,000 square feet to 10,000 square feet in area, where more modern buildings built from the seventies to today have bigger parcel sizes that average 60,000 square feet in area. Larger lots generally contain civic or government buildings.

Courthouse Square is a major regional employment, commercial, and transportation center with a mix of commercial, office, and a few residential buildings. Lot coverage can be up to 100 percent for some of the older buildings, such as those along Fourth Street, whereas newer...
Courthouse Square: Urban Form Typologies

Urban Form and Architecture: The architecture styles vary depending on the year of construction. Pictured is the historic Empire Building and La Rosa restaurant adjacent to Old Courthouse Square Plaza.

Streetscape: Parking lots, blank building sides, and graffiti negatively affect the pedestrian experience. Looking down Ross Street from Mendocino Avenue.

Public Places: View of a café looking down Mendocino near Fifth Street. Outdoor seating such as this café provides an opportunity for activity along the street.

Urban Form and Architecture: View of a government building at D and Second streets. The bulky massing of the concrete building and angled-down glass creates an imposing streetscape.

Public Places: Newly reunited Old Courthouse Square provides an important civic gathering area, public space, and is at the heart of Courthouse Square.

Vegetation and Landscape: Large pine trees enhance the character of the square and provide shade during hot days. Small planters filled with bushes or flowers provide additional landscaping.

Streetscape: View of the compact, historic commercial buildings along Fourth Street. Streetscape improvements include bulb-outs and pedestrian crosswalk, outside dining, planters and street trees, continuous street frontage, and pedestrian-scaled buildings with store frontage.

Streetscape: View looking down Third Street shows a well-landscaped streetscape with on-street parking and painted bike lanes.
buildings typically include surface parking lots and setbacks which can lower lot coverage down to 50 percent. Building heights vary, with some of the tallest buildings up to five or six stories and 100 feet tall, however buildings in this area are typically under three stories. Typical architecture features largely depend on when the building was built; many pre-war buildings along Fourth Street are made from brick or stone with fine façade detailing and windows and doors facing the street frontage. By contrast, the more modern buildings - especially the government-owned buildings on D and E Streets - tend to be taller with fewer doors and less variation in color and materials, which together with blanks walls creates a bulkier look and a less intimate feel.

Streets in Courthouse Square generally have an east-west and north-south direction with intersections at every corner. The rectangular grid and high connectivity of the streets make it easy for pedestrians to navigate through the planning area, although the Santa Rosa Plaza Mall and US 101 present barriers for people traveling to and from Railroad Square. North of Fourth Street, the blocks are longer than in other parts of this area, which affects pedestrian movement. However, existing surface parking lots provide connections for pedestrians between B Street and Mendocino Avenue and between Ripley and Humboldt.

Streetscapes in the downtown core generally conform with the City’s Main Street or Avenue classification, providing 10-foot travel lane in each direction with an 8-feet parking lane on either side although there are a few narrower Alley streets as well. Major streets, such as B Street, E Street, and Santa Rosa Avenue, are four lanes wide although the rest of the downtown streets are two lanes wide. Fourth Street is unique in that is has older buildings with angled parking and the outdoor dining, landscaping, street trees, planters, bike lockers, wide sidewalks, and wayfinding create a pleasant pedestrian realm. Sidewalks width is typically at 5-feet minimum, although areas with more storefronts and outdoor seating can be up to 14 feet or more. Curbside plantings are usually present throughout and active street frontages help contribute to a walkable pedestrian environment.

The primary park and plaza within the downtown core is Courthouse Square. Since the 1960s, this public space had been bisected by Santa Rosa and Mendocino Avenues, however, it was reunited into a large outdoor plaza in 2017 designed to hold large events as well as a place for guests and local workers to enjoy. Some of the subarea’s tallest buildings surround the plaza and it is home to several large redwood trees, which contribute to a sense of place and support the identity of Santa Rosa as the capital of the Redwood Empire. The plaza gets sunlight throughout the year, however in the southern portion of the plaza, there is little shade to cool people in the summer. Other public spaces in the Courthouse Square area include Comstock Mall, which is a pedestrian-only paseo which connects Second Street to the Transit Mall, and the Prince Memorial Greenway Trail along the Santa Rosa Creek. While the creek and greenway are only about 300 yards to the south of Courthouse Square, there is little in the way of visual cues or signage that promotes a connection between these spaces.

Railroad Square

The Railroad Square subarea, shown on Figure 3.4, includes Historic Railroad Square, a strip of small-scale commercial buildings along Wilson Street between Sixth and Eighth streets, and two commercial properties between Third Street and Santa Rosa Creek that contain hotels. Designated a preservation district, Historic Railroad Square is generally bounded by US 101, Sixth Street, Santa Rosa Creek, and Third Street and includes buildings that date from the early 1900s. The street grid in this area is generally rectilinear with shorter blocks typically sized 360 feet by 260 feet. Individual lots within Historic Railroad Square and up Wilson Street are typically small and rectangular in shape, ranging from 5,000 square feet to 21,000 square feet in area. The grid is disrupted at the SMART tracks, where Fourth Street terminates, creating the large property west of the tracks known as the SMART site. South of Third Street, the grid is again disrupted as Wilson Avenue becomes Railroad Street as it curves toward the creek and connects to Olive Street. The largest lot along Railroad Street is 350,600 square feet in area, while the SMART site around 440,000 square feet. The eastern perimeter of the
area is defined by US 101 and the Santa Rosa Plaza mall. Key east-west streets formerly connected to Courthouse Square, but now pass under an elevated portion of US 101 and terminate at the mall.

Railroad Square mostly contains a variety of shops, restaurants, offices, hotels, and other commercial uses although there are a few residential properties as well. Lot coverage varies depending on the age and use of the building, ranging from nearly 100 percent for some of the historic commercial buildings to 25 percent for the newer hotels. Building heights range from one story and 15 feet tall to four stories and 50 feet tall, but most buildings are typically under two stories. Typical architecture features found within this area include storefronts with large windows, detailed facades, and a variety of brick-and-stuccowork which provide a distinct, quaint, and intimate charm. Some of the newer buildings have large parking lots surrounding the buildings which disrupts the continuity of existing building facades.

Overall Historic Railroad Square features a compact, walkable street grid that makes it easy for pedestrians to navigate through this area. However, barriers such as US 101 and Santa Rosa Plaza Mall block connections to Courthouse Square and the rail tracks disconnect Historic Railroad Square from the SMART station area. The underpasses all contain sidewalks, and there are striped bicycle lanes in the underpasses at Fifth and Sixth streets. The Fourth Street underpass has lighting and paving treatments intended to enhance the pedestrian experience. The Sixth Street underpass also has lighting, but the Fifth Street underpass does not. Overall the colorless concrete of the freeway creates a stark environment in the underpasses.

Streetscapes within Railroad Square generally conform with the City’s Main Street classification, providing one 10-foot travel lane in each direction, and on-street parking is a mixture of parallel and angled to the curb. Sidewalk width is typically at least 5-feet with an addition 3 to 4-feet for tree wells. The presence of curbside plantings and zero-setback active street frontages contribute to a walkable and lively pedestrian environment.
Railroad Square: Urban Form Typologies

Urban Form and Architecture: Looking down Davis Street from Fourth Street, a modern three-story office building shown left contrasts with the historic Whistlestop Antiques building on the right.

Streetscape: Stores typically have pedestrian-scaled and highly activated storefronts that encourage window shopping and walkability.

Streetscape: View of the US 101 underpass at Fourth Street, one of the primary connections between Railroad Square, Santa Rosa Plaza Mall, and Courthouse Square. The large “Railroad Square” letters provide a sense of arrival and has wide sidewalks and decorative streetlights.

Public Places: Tucked-back privately owned and publicly accessible spaces, like the one shown above, provide opportunities for people to sit outside.

Public Places: Other than Depot Park (shown right) Railroad Square area largely relies on private places that are publicly accessible in the form of cafes and outdoor seating areas for eating.

Vegetation and Landscape: Depot Park is the only designated park in Railroad Square and has a variety of tree types and vegetation.

Streetscape: View of the small-scale commercial buildings located along Wilson Street at Seventh. Although traditionally not a part of Historic Railroad Square, these buildings are still historic and act as a connection further up to Maxwell Court.

Streetscape: View looking down Fourth Street shows tall street trees, narrow roadway width, and active storefronts all help make the area feel more walkable.
The main public park within Railroad Square is Santa Rosa Depot Park which sits between the historic train station and Hotel La Rose. The park is 200 feet by 50 feet and features public art, grass areas, benches, and various species of trees. The coffee shops and outdoor dining venues that are found throughout the area offer privately owned but publicly accessible spaces. There are two main walking and biking trails located in this subarea: The Prince Memorial Greenway along the Santa Rosa Creek and the Joe Rodota Trail, which runs in the railroad right of way. There are no strong connections to the creek from the Railroad Square area, however, given the size of the properties adjacent to the creek and the fact that they are not traversed by streets or trails that provide linkage.

Santa Rosa Plaza Mall

The Santa Rosa Plaza Mall subarea is bounded by US 101, Santa Rosa Creek, B Street, and Sixth, A, and Seventh streets as shown on Figure 3.5. The mall, built in the early 1980s, takes up about five city blocks with the parking structures that surround it taking up another five blocks. The lot and building sizes are very large in comparison to those found in Historic Railroad Square and Courthouse Square, as the mall square footage alone is nearly 700,000 square feet in size. The buildings and parking garages take up most of the block and with limited street access creates a superblock which limits the number of streets and pedestrian walkways that connect through the site. The stand-alone buildings and lots along the Santa Rosa Creek are smaller in scale and have an average lot size of 32,000 square feet.

Lot coverage is 80 percent on average with much of the building built directly up to the property line. Building heights are typically two stories tall, except for the Macy’s building which is three stories and 58 feet tall. Architectural features are typical of shopping malls from this era and have little façade articulation, flat roofs, few windows, blank walls, and limited entrance locations, all of which creates a boxier look.

Figure 3.5. Santa Rosa Plaza Mall block pattern and building footprints.
Santa Rosa Plaza Mall: Urban Form Typologies

Urban Form and Architecture: The architecture style matches other suburban mall typologies with big and boxy massing and little relation to the street.

Streetscape: The mall in general does not support an active streetscape, although it does contain an adequate sidewalk and street trees.

Streetscape: View of the underpass at Third Street. The building creates harsh shadows as the road dips to go underneath the mall.

Streetscape: Looking down Fourth Street from the mall plaza, Fourth Street offers an opportunity to create an easy connection between Courthouse Square and Railroad Square.

Public Places: The plaza at the end of Fourth Street offer few amenities.

Vegetation and Landscape: Looking down Santa Rosa Plaza street, some colorful flowers and landscaping aesthetically improve the area.

Vegetation and Landscape: While the parking lot structure at the corner of Sixth and Morgan Street prohibits an active streetscape, the tall trees help add greenery to the street.

Streetscape: View down Santa Rosa Plaza road. Lack of sidewalks, wayfinding, and empty parking garages make it difficult for pedestrians to navigate through the mall.

East-west access in this area is very limited and pedestrians are required to either go underneath the building via an underpass at Third Street; to
enter and cut through the mall at Fourth Street; or travel through the property at Sixth Street. The size of the mall, limited street access, parking structures, and lack of clear connections create a barrier for pedestrians navigating through the planning area. A, First, and Fifth streets, generally match with the City's Minor Street classification, although no on-street parking is available, and sidewalks are inconsistently present on both sides of the street. B and Third streets are larger in size and match with the Avenue classification with two lanes in each direction. While street trees and curbside plantings are present throughout, due to lack of consistent sidewalk connections and few street-facing storefronts, this subarea does not contribute to a walkable pedestrian environment.

While the interior of the mall is open to the public, it is privately owned and open only during business hours. The plaza near the main entrance of the mall at Fourth Street is the only public space that is not limited to the interior of the mall. It contains benches, public art, a mall directory, lighting, and landscaping, which is generally well maintained. In terms of open space and trails, the Prince Memorial Greenway and the Santa Rosa Creek run along the southern edge of the site although very few connections exist from this subarea.

East of E Street

This subarea is generally bounded by E Street, Fifth Street, Brookwood Avenue, and Santa Rosa Creek, as shown on Figure 3.6. The block pattern differs from other downtown areas, with long, skinny blocks that run east to west and are range between 200 to 280 by 1,000 or more feet. Individual lots run north to south and are typically long and skinny in shape, ranging from 4,000 square feet to 54,000 square feet in area, with many lots spanning the shorter width of the block. In addition, there is one large, oddly-shaped vacant site located along Brookwood Avenue and Santa Rosa Creek.

The area contains a mix of single-family detached homes and businesses. Lot coverage is around 30 percent on average with generally consistent front, rear and side setbacks although surface parking lots can take up a greater portion of some of the commercial lots. Building heights are typically one to two stories or 14 to 25 feet tall. Typical architectural features depend on the use and age of the building; older single-family homes typically have gabled roofs, front porches, and doorways located facing the street frontage while the newer commercial buildings along fourth street have flat roofs, bigger storefront windows, and prominent entrances. While some older homes have been converted to professional offices, they generally retain their residential design whereas newer commercial buildings tend to have less façade articulation which creates a boxier look.

![Figure 3.6. East of E Street block pattern and building footprints.](image-url)
Streets within the subarea generally have an east-west orientation providing a direct connection with the Courthouse Square area to the west and other Santa Rosa neighborhoods to the east. Streetscapes in the East of E Street subarea generally conform with the City’s classifications, with Fourth Street following the Main Street characteristics and the rest of the streets following the Neighborhood. Fourth Street in Courthouse Square subarea is a main commercial street and this character is brought up through East of E Street as well, although the street is wider and less well-defined in this stretch as compared to the stretch in Courthouse Square. Fourth Street has one 13-foot travel lane in each direction with angled parking flanking the street while the other neighborhood streets have one 9-foot travel lane with 6-foot parking lane on either side. Sidewalks width is typically 5-feet at minimum with 3-to-4-feet for tree wells. Street trees and curbside planting within the front property setback are present throughout which contribute to a walkable pedestrian environment, although there are fewer north-south connections than in other downtown areas given the block pattern.

Green spaces within the areas include Fremont Park, located on Fourth and Hope Street, and Santa Rosa Creek. At 1.7 acres in size, Fremont Park has spacious grass lawns, public art, a fountain, and a variety of tree species. While the Santa Rosa Creek does run through the area, it is fenced off and there are no are publicly-available connections. The Prince Memorial Greenway/Santa Rosa Creek Trail ends at Santa Rosa Avenue and does not extend into this subarea.
Santa Rosa Avenue

A key gateway to downtown, the Santa Rosa Avenue subarea consists of parcels on both sides of Santa Rosa Avenue between Sonoma Avenue and Highway 12 as shown in Figure 3.7. Santa Rosa Avenue runs north-south with east-west streets, creating blocks that are typically 250 feet wide with some exceptions for commercial properties and blocks with parks and open space. Individual lots run perpendicular to the street, ranging from 4,500 square feet to 133,000 square feet in area, and average between 100 to 140 feet in depth. Larger lots are typically vacant or auto body shops while the smaller lots have restaurants and retail. Most buildings appear to have been developed since World War II.

The lots along Santa Rosa Avenue contain a mix of mostly commercial uses, with a few single-family residential properties and motels. Lot coverage is 50 percent on average and many properties have off-street parking lots. Building heights are typically one to two stories or 14 to 25 feet. Typical architecture features vary based on the historic context and use, with commercial buildings having a boxier look due to parapets and flat roofs and generally have consistent storefront windows and entrances. Residential properties have porches, gabled roofs, and garages setback from the street.

Santa Rosa Avenue generally conforms with the City’s Avenue Street classification, providing two 11-foot lanes in each direction with a 6-foot parking lane on either side and sidewalk typically 6-to7-feet wide. Setbacks vary greatly along the corridor. Some commercial properties have zero lot lines, while others have large surface parking lots along the street frontage. Residences typically have moderate front setbacks, often landscaped. Overall, landscaping and street tree coverage is inconsistent along the corridor. Trees and landscaping along intersecting east-west streets are visible from Santa Rosa Avenue. There are three signaled intersections with crosswalks and two non-signalized crosswalks.

Figure 3.7. Santa Rosa Avenue block pattern and building footprints.
There are two main public parks along the Santa Rosa Avenue subarea: the Luther Burbank Home and Gardens and Julliard Park. Connections to the Santa Rosa Creek Trail, greenway, and Prince Gateway Park are just north of Sonoma Avenue outside of the subarea boundary. The Luther Burbank Home and Gardens includes decorative gardens, walking paths, and a historical home. The 9.1-acre Julliard Park is one of the oldest parks in Santa Rosa. Park amenities include large grassy areas, a community garden, and a playground as well as hosting musical and community events. Both parks are across from each other on the north-end of Santa Rosa Avenue, leaving a lack of other parks or public spaces further south.

College Avenue

The College Avenue subarea consists of properties that face the southern edge of College Avenue and is bounded by Brookwood Avenue to the east, Cleveland Avenue to the west, and bisected by Mendocino Avenue, as shown in Figure 3.8a and 3.8b. The blocks along College Avenue vary significantly based on the surrounding street context and range between 90 to 230 feet in width. Parcels generally align perpendicular to College Avenue and vary in size depending on use, with individual lots typically small and rectangular in shape, ranging from 3,000 square feet to 29,000 square feet in area except for the largest parcel, Santa Rosa Middle School, which is 436,830 square feet in size.

The buildings along College Avenue are a mixture of residential and commercial uses, with some older homes being converted into offices, similar to those found in the area east of E Street. Lot coverage is 25 percent on average with generally consistent front setbacks. Most structures are under two stories tall, except for the office building at 320 College Avenue which is three stories tall, and have ornamental architectural features like porches, windows, and overhangs which adds character the character of the street. In a few cases, parking lots directly front along the street breaking up the otherwise continuous street frontage.
The College Avenue streetscape generally conforms with the City’s Avenue Street classification, providing two 11-foot travel lanes in each direction with a 7-foot parking lane on either side. Sidewalk width is typically 5-feet or less with no curbside planting which is not in conformance with the Avenue classification. Although College Avenue does have regular street intersections and crosswalks, there is a high-volume of traffic on the street and utility infrastructure impedes the pedestrian path of travel along sidewalks in places.

There are no publicly accessible parks or plazas along College Avenue. While there are fields at Santa Rosa Middle School, these are fenced off and generally for student use only.

Figure 3.8a. College Avenue, West of Mendocino Avenue block pattern and building footprints.

Figure 3.8b. College Avenue, East of Mendocino Avenue block pattern and building footprints.

College Avenue: Urban Form Typologies

Urban Form and Architecture: Shown above is a business that looks like it was once a residential home. Key features include ornamentation, plantings, porch, and windows and entrances facing the street.

Streetscape: Looking west in between Mendocino Avenue and Glen Street, most of the streetscape is taken up with the travel lanes. The painted white line indications on-street parking.

Public Places: Other than the street itself, there are no public places along College Avenue. The street sign shown above is in the middle of the sidewalk which adds another barrier for pedestrian usage.

Vegetation and Landscape: Looking east towards Humboldt Street, the streetscape and street trees often vary depending on the property owner.

Streetscape: View of US 101 on-ramp towards San Francisco. The big turning radius, crosswalk location, and vehicles speeding up to get on the freeway make this a dangerous crosswalk for pedestrians.

Streetscape: The intersection at College, Mendocino, and Healdsburg avenues can be a gateway opportunity to downtown Courthouse Square.
Industrial Areas

Industrial areas typically flank the rail corridor as it runs through the planning area. Active industrial areas are principally concentrated in the Maxwell Court and Roberts-Sebastopol areas, and there is an historic industrial area between Wilson and Donahue streets in the northwestern part of the planning area. Key elements of urban form of each are described below.

Maxwell Court

The Maxwell Court subarea is bounded by Dutton Avenue, College Avenue, West Ninth Street, and Cleveland Avenue, as shown in Figure 3.9. The area does not have a fine-grained street grid as exists in many parts of Downtown Santa Rosa. Parcels are defined by three principal streets: Dutton Avenue, Maxwell Drive, and Maxwell Court. Individual lots tend to be larger than in commercial or residential areas and range from 8,000 to 123,000 square feet in area. The lots don’t have a consistent size, but many of them are generally rectangular in shape.

Maxwell Court contains mostly industrial properties with light industrial service buildings and warehouses. Lot coverage depends on the type of industrial use present on the lot, with an average of 20 percent. Building heights are typically one story or 12 to 20 feet tall apart from the machinery at the BoDean Asphalt Plant which is much taller. Due to the industrial nature, the architectural features are designed for function and include materials like corrugated metal, domed or flat roofs, and low-rise concrete blocks.

The two main streets are Maxwell Drive, which runs north-south, and Maxwell Court, which run east-west. Maxwell Drive has a curve in it which breaks up any grid pattern. Streets in Maxwell Court generally reflect the functionality of the buildings and are mostly used for trucks and other industrial purposes. As such, the streets are generally not well connected to the rest of the area as to separate industrial from other land uses. The streetscapes in Maxwell Court generally conform with the City’s Industrial Street, providing one 13-foot travel land in each direction with an 8-foot parking lane on either side, although neither the travel nor parking lanes are marked. Sidewalk width is typically 5-feet, with sporadic street trees and curbside landscaping. There is no public open space in the area.

Figure 3.9. Maxwell Court block pattern and building footprints.
Maxwell Court: Urban Form Typologies

Urban Form and Architecture: Shown above is an office building that reflects the utilitarian design of Maxwell Court.

Streetscape: Looking along the northern edge of Maxwell Court along College Avenue which includes narrow sidewalks, utilities poles, and vacant lots.

Public Places: The multiuse SMART Trail is the only designated public space in Maxwell Court. The now defunct cement factory can be seen in the background.

Vegetation and Landscape: Trees vary by site and are generally inconsistent along the street. (Photo credit: Google)

Roberts–Sebastopol

The Roberts-Sebastopol subarea is generally bounded by Highway 12, Dutton Avenue, Sebastopol Road, and Olive Street as shown on Figure 3.10. There are two industrial areas that are separated by Highway 12 from this main subarea along the rail corridor which are the industrial properties along Roberts Avenue and Chestnut Street/Buckingham Drive. The street grid is generally rectilinear, although the lack of through streets and the industrial nature of the area means that the blocks are not as well-defined as other subareas and do not have a uniform size. Individual lots are typically larger than other subareas and rectangular in shape, ranging from 9,000 square feet to 140,000 square feet in area. Due to the alignments of the SMART tracks and Highway 12, some of the lots are irregular in shape and have sharp angles.

The Roberts-Sebastopol area contains predominately industrial and commercial structures, although a few single-family residential houses can be found, and new multifamily units are being constructed on the south side of Sebastopol Road outside of the planning area. Lot coverage is 50 percent on average and is mostly due to parking or storage lots that support industrial uses. Building heights are typically one story and range between 10 to 20 feet tall. Due to the industrial nature of the buildings,
the architectural features tend to have little façade articulation, boxier massing, and constructed of functional materials like corrugated metal, concrete, and PVC siding.

The two main streets in this area, Dutton Avenue and Sebastopol Road, intersect to form the bottom south-west corner of the subarea. Roberts Avenue, which turns into Holbrook Street, bisects Sebastopol Road and dead ends within one of the industrial properties. Because of Highway 12 and the SMART tracks, the area is generally not well connected to the rest of downtown, with the exception that Dutton Avenue and Sebastopol Road by way of Olive and Railroad Street connect to Third Street. The Joe Rodota Trail does provide some bicycle and pedestrian access north with a potential link to Railroad Square.

The Dutton Avenue streetscape generally conforms with the City’s Parkway Street classification, providing two 12-foot travel lanes in each direction, a shared turn lane in the middle, and no on-street parking. Sidewalk width is typically 5-feet and is buffered by a 6-foot tree and landscape planting zone. The Sebastopol streetscape generally conforms to the Boulevard Street classification, providing one 11-foot travel lane in each direction with a 7-foot parking on one side. Sidewalk width and quality depends on if the property has been developed or not and is generally around 5-feet, same with curbside plantings. Roberts Avenue streetscape generally conforms with the City’s Lane Street classification and does not have parking, lane, or sidewalk demarcations.

While there are not any designated parks or plazas within the area, the Joe Rodota Trail runs east-west throughout the site and connects to the Prince Memorial Greenway and Santa Rosas Creek Trail. Olive Street passes through the historic Olive Park neighborhood and crosses under Highway 12. There is a large mural in the underpass, however, there is no lighting or bicycle lanes and pedestrians on the sidewalks are not well-buffered from traffic.

Donahue—Wilson

The industrial properties in this area are bounded by Donahue Street, West Ninth Street, Wilson Street, and West Eighth Street. The Wilson-Donahue area is unique in that it contains historic industrial structures.

Roberts Neighborhood Urban Form Typologies

Urban Form and Architecture: View of new multi-family housing along Sebastopol at Boyd Street.

Streetscape: The building shown above is built up to the edge of the sidewalk and the storefront engages pedestrians.

Public Places: View looking down along the Joe Rodota Trail which is the multi-use trail that provides a connection under Highway 12.

Vegetation and Landscape: Vegetation is sparse and largely uncoordinated. Equipment and metal fencing from the industrial properties are a common sight.
from when the area was used for freight rail and manufacturing. Individual lots are quite large, with three lots totaling over 211,000 square feet in area. A few of the buildings take up a significant portion of the lot they occupy, with maximum lot coverage at 94 percent. Architectural features reflect the time period which the buildings were built, with the older warehouses built in red brick and newer ones using concrete blocks and wood sheathing. There is a potential to extend Donahue Street north into Maxwell Court to increase connectivity from both areas.

Residential Neighborhoods

The remainder of the planning area is made up of established residential neighborhoods, some of which contain historic homes and have been designated as preservation districts in order to protect architectural heritage and character. Key elements of urban form in the planning area’s residential neighborhoods are described below.

Pre-War Neighborhoods

Pre-war residential neighborhoods in the planning area include the St. Rose, Cherry Street, West End, North Railroad Square, Olive Park, and SOFA neighborhoods, as well as a portion of Burbank Gardens, as shown on Figure 3.11. These neighborhoods contain homes that date from the 1870s to 1940s as well as more modern construction, and several have been designated as preservation districts (see Chapter 4). The street grid in these neighborhoods is generally rectilinear with shorter blocks typically sized 250 by 250 feet and longer blocks sized 250 by 500 feet. Individual lots are typically small and rectangular in shape, ranging from 3,000 square feet to 10,000 square feet in area. Larger lots or those that are square, triangular, and L-shaped generally contain parks or schools.

The pre-war neighborhoods contain a mix of single-family detached homes and smaller-scale multifamily structures. Lot coverage is 30 percent on average with generally consistent front, rear and side setbacks. Building heights are typically one to two stories or 14 to 25 feet. Typical architectural features of single-family homes in these neighborhoods include gabled roofs, front porches, and doorways located facing the street. Some older homes have been converted to professional office or multifamily uses; however, in general multifamily structures in these neighborhoods tend to be newer construction. These buildings tend to have little facade articulation and smaller setbacks, which creates a boxier look.
Figure 3.11 Downtown Residential Neighborhoods

- SMART Rail
- Undercrossing

Source: City of Santa Rosa, 2019; Dyett & Bhatia, 2019
Streets in the pre-war residential neighborhoods generally have an east-west orientation, with intersecting streets running in a north-south direction. The grid is shifted about 45 degrees from the orientation of streets in the principal commercial districts. While grid shifts can be disorienting for pedestrians navigating through the planning area, connectivity to surrounding areas from the pre-war residential neighborhoods is generally good, given the size of blocks and frequency of intersections. One exception occurs in the West End neighborhood, where the grid shifts at Eighth Street and Hewitt Street terminates abruptly east of Madison, requiring pedestrians to take a circuitous route out of the neighborhood. However, overall the shifts in the grid contribute to the character of these neighborhoods, with the effect of making the historic neighborhoods feel like residential enclaves connected to but slightly apart from adjacent areas.

The freeways represent significant barriers between neighborhoods, with an elevated segment of US 101 separating the St. Rose and West End neighborhoods, while Olive Park is an enclave unto itself separated from SOFA by US 101 and from the Roseland area by Highway 12. Underpasses provide connections at Ninth Street, Olive Street and Dutton Avenue. All have sidewalks on both sides of the street, but little separation from traffic. The Ninth and Olive underpasses have limited public art, but none of the underpasses are lit, and anecdotally, area residents have expressed concern for safety and personal security.

Streetscapes in the pre-war residential neighborhoods generally conform with the City’s Neighborhood Street classification, providing one 9-foot travel lane in each direction with a 6-foot parking lane on either side. Sidewalk width is typically 5-feet and street trees and curbside plantings are present throughout, with moderate front setbacks that contribute to a walkable pedestrian environment. Currently, South A Street in the SOFA neighborhood, Morgan in the North Railroad Square and St. Rose neighborhoods, and a portion of West Ninth Street in the West End

Pre-War Neighborhoods

![Typical single-family homes in pre-War neighborhoods.](image)

![Examples of multi-family housing in pre-War neighborhoods.](image)

![Typical streetscape in pre-War neighborhoods.](image)

![DeTurk Park in the West End neighborhood.](image)
There are public parks in the West End, Olive Park and Burbank Gardens neighborhoods. Demeo Park and Olive Park feature grass lawns and children’s play structures. The DeTurk Round Barn site has a grassy lawn and a dog run. Luther Burbank Home and Gardens has paved pathways and setting. Both the Olive Park and West End neighborhoods abut Santa Rosa Creek, which is flanked by the Santa Rosa Creek Trail on both the north and south. However, the creek and trail are largely fenced off and public access is limited to a few points from these neighborhoods.

Imwalle Area

The Imwalle area is located at the western end of the planning area, bounded roughly by North Dutton Avenue on the east, Highway 12 to the south, Rusch Court on the west, and Santa Rosa Creek to the north. This area contains several large, undeveloped parcels as well as newer residential developments. Prominent focal points include Imwalle Gardens, a family-owned retail business selling plants and produce located mid-block along West Third Street, and the Westside Plaza mall, a single-story neighborhood-serving retail center at the southwest corner of North Dutton and West Third. Small lot single-family residential development abuts the area to the west.

The Imwalle area is characterized by large lots on both sides of West Third Street. Lot size is not consistent. The largest lots are approximately 800 by 880 feet and the smallest approximately 180 by 200 feet. Undeveloped lots have not been subdivided and there are no internal roadways. Developed lots feature a typically suburban street patterns, with curving private streets and cul-de-sacs at the interior. There are few connections to the principal arterial roadways in the area, North Dutton and West Third, and the developments are gated and fenced, making them largely self-contained.

The two new developments at the northwest corner of Dutton and West Third feature 2-story multi-family buildings oriented around common open space and surface parking. Typical architectural features include slanted shed roofs, covered exterior stairwells, and a consistent color scheme for all buildings. Additionally, a new development is currently under construction immediately to the west of Imwalle Gardens which will provide 78 new detached single-family homes and attached single-family units.

North Dutton and West Third are both classified as regional arterials. North Dutton has five travel lanes, each 11 feet in width and no striped bicycle facilities. There are sidewalks on both sides of the street, generally with a narrow strip of landscaping, although the sidewalk along the
frontage of the new development on the west side has been improved with wide landscaping and trees flanking that portion of the sidewalk.

West Third is a gateway into the downtown area, as it leads to the Downtown SMART station and the central business district. While not currently designated as a Gateway combining district in the Zoning Code, gateway features could still be incorporated as Third Street enters the downtown area to create a sense of place and arrival.

Where it connects with Dutton, West Third has five 11-foot travel lanes, but narrows to two lanes as it moves to the west. There are currently striped Class II bicycle lanes on both sides of West Third, although the lanes are narrow and there is no buffering from traffic. Near the intersection with Dutton, there are sidewalks on both sides of West Third, although on the north side the sidewalk is very narrow and pedestrian travel is obstructed by electric poles and signage. Further to the west the sidewalk has been widened improved with landscaping in front of the new residential development but becomes an unpaved pathway and then terminates after Imwalle Gardens. On the south side the sidewalk stops after the Westside Plaza mall.

There are no neighborhood or community parks within the Imwalle area. The Santa Rosa Creek Trail runs along the northern edge of the area; however, there is currently no public access to it from this neighborhood.
3.3 Key Findings and Planning Considerations

- The planning area has a number of larger lots on sites such as the City Hall complex, the SMART site, the Sears site, and others in industrial areas that offer opportunities for greater architectural variety. Whereas the constraints of smaller infill lots generally lead developers to maximize the building envelope, development on larger lots offers opportunities for podium construction and point towers with more sunlight and better views, as well as opportunities for a greater variety, size, and type of residential units. Development standards and guidelines should recognize and address this.

- Blank building walls such as those on institutional buildings in the Courthouse Square area and Santa Rosa Plaza can be animated with public art, light installations, or vertical vegetation to add visual interest and build sense of place downtown.

- Publicly accessible private open spaces at ground level or on the roofs of buildings downtown can be encouraged to complement City-owned parks and plazas as development and redevelopment takes place. Locations and access can be showcased on maps and wayfinding signage downtown, as well as on the internet.

- While many underpasses in the planning area already have sidewalks and limited street art and lighting, further enhancements are needed to activate the public realm in these areas and increase sense of security for pedestrians and cyclists. Adding art, light and color can make these spaces more welcoming. Where space permits and foot traffic warrants, such as under US 101, space for pop up retail, street performances, or even a skate park can revitalize these spaces.

- Publicly accessible connections through and to the interior of larger sites should be encouraged as development occurs in order to enhance connectivity downtown and provide safe, convenient and visually interesting routes for cyclists and pedestrians. Multiple connections to surrounding neighborhoods and streets should be encouraged.

- Currently there are few points of access to the Joe Rodota and Santa Rosa Creek trails, which are largely fenced off as they run through the planning area. This valuable community asset can be optimized and enhanced with additional access points, improved wayfinding signage and standards that require adjacent development to address the creek.

- Vacant and underutilized properties along key corridors - Santa Rosa Avenue, West Third Street, Sebastopol Road, and E Street - present opportunities to strengthen gateways into Downtown Santa Rosa through design that creates a sense of transition, announces arrival and builds sense of place.
4. HISTORIC RESOURCES
This Historic Resources Existing Conditions Chapter for the Santa Rosa Downtown Station Area Specific Plan provides a brief historic context of Santa Rosa’s Downtown, summarizes the historic resource regulatory framework and the known historic resources within the planning area, discusses City and state plans and laws that may affect historic resources in the planning area, and outlines key findings and planning considerations.

4.1 Historic Context of Downtown Santa Rosa

The following is a brief history of the physical development of downtown Santa Rosa over time.

The land that now constitutes the City of Santa Rosa was first inhabited by the Southern Pomo tribe. As mentioned in the Santa Rosa General Plan 2035, archaeologists speculate that Native American habitation in the region began approximately 7,000 years ago. The Pomo territory was quite large, extending from the Pacific Coast to the west, inland to Clear Lake, and south to the Russian River Valley. The Pomo relied upon fishing, hunting, and gathering. Acorns were an important staple to their diet, as well as salmon, wild greens, mushrooms, berries, insects, and rodents. They were also known for their intricate basketry made of bark, roots, leaves, and branches with shells and feathers for decoration. Creeks such as Santa Rosa Creek, which runs roughly east-west through the planning area, are significant with respect to prehistoric resources because Native American archaeological sites are often located near waterways as well as adjacent alluvial valleys. According to the 2035 General Plan, given the environmental settings, the archaeologically rich nature of the Santa Rosa area, and the amount of area that has not yet been surveyed for archaeological resources, there is a high potential for discovering additional Native American sites.

By the nineteenth century, Spanish exploration of the Bay Area radically changed Southern Pomo culture. Between 1821 and 1828, Spanish missionaries moved many of the Southern Pomo from the Santa Rosa Plain to Mission San Rafael, at present-day San Rafael. The Pomo suffered from infectious diseases such as measles and smallpox, and fatalities were high. Following Mexican independence in 1821 and secularization of the missions in 1834, large ranchos were established by Mexican citizens.

The future city of Santa Rosa was settled by Dona Maria Carrillo and nine of her adult children in 1837. Carrillo, who was the mother-in-law of General Vallejo and aunt of Mexican governor Pio Pico, was granted an 8,800-acre ranch in 1841, Rancho Cabeza de Santa Rosa, which encompasses most of Santa Rosa today. By the time the United States annexed California from Mexico and established statehood in 1850, numerous settlers occupied farms in the Santa Rosa area.

Oliver Beaulieu, a French-Canadian fur trapper, bought land on the north side of Santa Rosa Creek from a Carrillo heir, Julio Carrillo, in 1850. Beaulieu laid out a town named Franklin near what is now 4th Street and Bryden, east of the planning area. Meanwhile, Santa Rosa was established about a mile and a half west by developers Barney Hoen and Ted Hahman, who platted the town in 1853. Julio Carrillo, Hoen, and Hahman donated the town plaza, and through successful boosterism, they won an election to move the Sonoma County seat from the town of Sonoma to the newly established Santa Rosa in September 1854. The new town was laid out with a rectangular street grid, but subsequent irregular additions and subdivisions have obscured this early plan. Anchored by the town plaza, now known as Courthouse Square, a commercial center formed on 3rd and 4th streets and Mendocino Avenue. The Santa Rosa History blog article “The Jewel in the Boomtown” lists several impressive buildings that were constructed downtown, including the Santa Rosa Athenaeum (an opera house, 1884), the Grand Hotel (ca. 1876), and the Sonoma County Courthouse (1883). None of these buildings remain extant.
In the later nineteenth century, according to the “Historical Overview of Santa Rosa, California” the town flourished as both the county seat and as an agricultural trading center. Potatoes, garden vegetables, grain, apples, and vineyards have all at times bolstered Santa Rosa’s agricultural economy. In 1870, the future Northwestern Pacific Railroad laid tracks through Santa Rosa on a north-south line between Willits and Tiburon (with water connections to San Francisco). Railroad development continued with an 1877 spur of the Northwestern Pacific Line and an 1888 Southern Pacific Line connecting Santa Rosa with the transcontinental railroad, as mentioned in Report: Cultural Heritage Survey of the City of Santa Rosa. As a result, a second commercial area developed adjacent to the railroad depot and associated warehouse buildings, though it was directly connected via 4th Street to Courthouse Square three blocks to the east.

As canneries, wineries, fruit drying, and quarrying became integral to the city’s economic growth, Santa Rosa experienced considerable population growth. Between 1870, when the railroad arrived, and 1900, the population grew from about 900 to 6,673 as reported in the article “Historical Overview of Santa Rosa, California”. Various ethnic groups contributed to this growth in the late nineteenth century, including Irish, German, Japanese, and Chinese inhabitants. A small number of black residents settled in Santa Rosa, and some Native Americans remained mainly as farm laborers. Particularly significant to the city’s development, however, was the arrival of Italian immigrants beginning around 1885. The Cultural Heritage Survey mentions that, in addition to forming majority-Italian neighborhoods, Italian residents contributed to Santa Rosa’s economy through the growing basalt industry as well as through managing various produce, grocery, and wine businesses.

Basalt-block quarrying in Santa Rosa has had a particularly visible impact on the city’s development. Often through the handiwork of Italian residents, locally sourced basalt was used to construct landmark buildings through the 1920s, including the Carnegie Library (1904) and St. Rose Church (1900) as listed in The Cultural Heritage Survey. Several outstanding examples of basalt-block construction are clustered at Railroad Square. The stone Northwestern Pacific Depot (1904), La Rose Hotel (1907), Western Hotel (1905), and Railway Express Agency Building (1925) are all impressive reminders of Santa Rosa’s basalt quarries. Railroad Square’s stone buildings, along with several adjacent warehouse buildings, were listed on the National Register of Historic Places in 1979.

The 1906 earthquake inflicted serious damage on downtown Santa Rosa’s buildings. While some of Railroad Square’s stone buildings survived, most of the city’s commercial center was decimated during the earthquake and subsequent fires, including the 1883 courthouse. The report “Context: Commercial Development in Santa Rosa, 1906-1947” remarks that the business district was quickly rebuilt in its original location, and numerous one-, two-, and three-story brick commercial buildings proliferated in the subsequent decades, built in a variety of styles common in early twentieth-century American commercial buildings. A streetcar along 4th Street connected downtown with outlying residential areas.

The city’s two commercial cores surrounding Courthouse Square and Railroad Square were bordered by several residential districts of varying esteem, ranging from working-class bungalows to striking Queen Anne dwellings, all built in the late nineteenth to early twentieth centuries. Some residential neighborhoods north of downtown like Cherry Street retained many impressive nineteenth-century houses, while areas to the south and west of the commercial center, like Olive Park and the Saint Rose, developed more rapidly in the early decades of the next century. Santa Rosa continued to grow in the 1910s and 1920s, and a diversified economy cushioned inhabitants from financial collapse during the Great Depression. By the end of the 1930s, the “Historical Overview of Santa Rosa, California” described Santa Rosa as a city that prided itself as a healthy and vibrant small city, with a thriving downtown, a school system, numerous religious institutions, and a range of industries that employed local residents.
The advent of World War II triggered major population growth in Santa Rosa that would continue through the 1980s. Two military airfields opened, the Santa Rosa Army Air Field in 1942 and the Naval Auxiliary Landing Field in 1943, attracting temporary residents from across the country. Many of these newcomers stayed in Santa Rosa after the war, and the population increased by 73 percent in the 1950s and 56 percent in the 1960s, according to the “Historical Over of Santa Rosa, California.”

In the mid-twentieth century, commercial activity dispersed from Santa Rosa’s historic core as downtowns across the country decentralized in favor of auto-oriented development. In addition to new suburban shopping centers, Santa Rosa experienced physical growth as the city annexed new land for tract housing. A multi-lane freeway was constructed through downtown in 1949, severing the core’s two commercial districts: Courthouse Square and Railroad Square. The city formed the Urban Renewal Agency in 1961 to address perceived downtown blight. In the late 1960s, several landmark buildings and historic commercial structures along Courthouse Square and along Santa Rosa Avenue to Sonoma Avenue were demolished, replaced with Late-Modernist financial buildings, a parking garage, and government buildings. As mentioned in an article in the Press Democrat, the 1910 courthouse was deemed seismically unfit and demolished in 1966; a four-lane road was built through the middle of Courthouse Square to improve traffic through the city center. Courts were relocated to a suburban site several miles north of downtown. The 1913 City Hall, overlooking Courthouse Square, was demolished in 1969 after the construction of the new Brutalist Civic Center at the corner of Santa Rosa and Sonoma Avenues, designed by De Brer, Bell, Heglund & Associates. Another earthquake in 1969 required the demolition of several additional commercial buildings and the reconstruction of US Highway 101, elevating the freeway and further dividing downtown Santa Rosa into two sections. Finally, a large shopping mall, Santa Rosa Plaza, was erected across several downtown blocks in 1983. In 2016, traffic was diverted and the old Courthouse Square was recreated between 3rd and 4th streets. The following year, in 2017, the Santa Rosa Area Rail Transit (SMART) station opened at Railroad Square, west of Wilson Street between 4th and 5th streets.

4.2 Designated Historic Resources

Historic resources create a distinct sense of place for residents and visitors to Santa Rosa.

As mentioned in the 2035 General Plan’s Historic Preservation Element, Santa Rosa has a rich architectural heritage spanning many periods, with nineteenth-century Gothic, Greek Revival and Italianate houses, turn-of-the-century Stick/Eastlake styles, early twentieth century Craftsman and California bungalows, 1920s Spanish Revival, and 1930s Art Deco buildings. Many of the City’s oldest and most prominent historically significant buildings, structures, and public places are located within the Downtown Station Area planning area. Individually designated resources are dispersed throughout the planning area, and include single-family residences, a church, barn, hotel, and commercial buildings. Construction dates for both individual resources and preservation districts range from the 1870s to 1940s, with Victorian-era residences dominating the preservation districts.

Properties that are officially designated on national, state or local registers are illustrated in Figure 4.1. Definitions of each historic register are included in the Regulatory Framework section, which follows. The 2007 Specific Plan boundary did not extend to Brookwood Avenue, the eastern extent of the General Plan Downtown Area, which is now included as the Specific Plan’s boundary. No designated historic resources are located in the area that was not covered in the 2007 Specific Plan, but there are a number of age-eligible parcels in the extended boundary area.
National

The following properties and historic districts are designated as either National Historic Landmarks or on the National Register of Historic Places:

National Historic Landmarks

The City of Santa Rosa has one property that is designated a National Historic Landmark, and it is located in the planning area:

- Luther Burbank House and Garden, 200 Santa Rosa Avenue (listed in 1964)

National Register of Historic Places

The City of Santa Rosa has 14 properties or districts that are listed in the National Register of Historic Places, of which nine are located in the planning area:

- Luther Burbank House and Garden, 200 Santa Rosa Avenue (listed in 1966)
- Hotel La Rose, 5th and Wilson Streets (listed in 1978)
- Railroad Square District, roughly bounded by 3rd, Davis, Wilson, and 6th Streets (listed in 1979)
- Park Apartments, 300 Santa Rosa Avenue (listed in 1979)
- Old Post Office, 425 7th Street (listed in 1979)
- Cnopius House, 726 College Avenue (listed in 1982)
- Sweet House, 607 Cherry Street (listed in 1988)
- Rosenberg’s Department Store, 700 4th Street (listed in 1994)
- De Turk Round Barn, 819 Donahue Street (listed in 2004)
Historic Resources

- Luther Burbank House, 200 Santa Rosa Avenue
- Rosenberg's Department Store, 700 4th Street
- De Turk Round Barn, 819 Donahue Street
- Cnopius House, 726 College Avenue
Figure 4.1 Individual Historic Resources

Legend

- Individually Listed Historic Resources *
 - Santa Rosa Local Historic Landmarks
 - National Historic Landmark & California State Landmark
 - National Register of Historic Places & California Register of Historical Resources
 - California Register Historical Resources

- SMART Rail
- Undercrossing

*Only Historic Resources within Downtown Station Area Specific Plan boundary are shown.

Source: City of Santa Rosa, 2018; Page & Turnbull, 2019; Dyett & Bhatia, 2019
State

The following properties and historic districts are designated on either the California Register of Historical Resources or as California State Landmarks:

California Register of Historical Resources

All properties and historic districts that are listed above in the National Register are automatically listed in the California Register. According to the California Historical Resources Information System's Directory of Properties in the Historic Property Data File, the following properties are not listed in the National Register but are listed in the California Register.

- 722 Donahue Street, Santa Rosa Wine Cellar, De Turks Winery
- 700 Donahue Street, L.W. Burris Distillery, Cold Storage

Similarly, the following properties were assigned National Register status codes of 2D2 or 2D3, indicating that they are contributing resources to eligible National Register districts and are listed on the California Register. The properties were assigned their codes through HUD Section 106 project reviews.

- Rosenberg Building, 306 Mendocino Avenue
- Timothy Shea House, 511 A Street
- John F. Azevedo House, 306 Orange Street,
- Martin/Hyde McMullen House, 124 W 8th Street
- 421 Lincoln Street
- 918 Cherry Street
- 512 A Street
- 138 W 6th Street

California State Landmarks

The City of Santa Rosa has one property that is designated a California State Landmark, and it is located in the planning area:

- Luther Burbank House and Garden, 200 Santa Rosa Avenue (listed in 1935)

Local

The following properties and historic districts are designated locally as Santa Rosa Landmarks or Preservation Districts:

Santa Rosa Landmarks

According to the Historic and Cultural Preservation Ordinance, a landmark is any site, including significant trees or other significant permanent landscaping located on a site, and/or a place, building, structure, street, street furniture, sign, work of art, natural feature or other object having a specific historical, archaeological, cultural or architectural value in the City and which has been designated a landmark by the Council. Santa Rosa has 22 local landmarks, of which five are located with the planning area:

- De Turk Round Barn, 819 Donahue Street
- Church of One Tree, 492 Sonoma Avenue
- Luther Burbank House & Gardens, 200 Santa Rosa Avenue
- Rosenberg Building, 306 Mendocino Avenue
- Alexander House, 412 Humboldt Street
Santa Rosa Preservation Districts

Santa Rosa’s preservation districts are areas that have special historic significance or represent one or more architectural periods or styles typical to the city’s history, as shown in Figure 4.2. The Historic (-H) combining district applies to all designated preservation districts, including both contributing and non-contributing parcels, shown in Figure 4.3. There are eight preservation districts in the city, of which six are wholly or partially located in the planning area:

- **Railroad Square** (designated in 1990): Railroad Square has a period of significance of 1888 to 1923. Though the commercial district is now severed from the east portion of downtown by a freeway, the district’s homogenous mixture of stores, hotels, warehouses, and railroad buildings characterize rail travel and commerce in the late nineteenth and early twentieth centuries.

- **Saint Rose** (designated in 1990): Saint Rose has a period of significance of 1872 to 1948. This residential district borders Santa Rosa’s commercial core and experienced a surge of residential construction in the 1920s. A variety of residential and commercial buildings fill the district, including single-story bungalows, duplexes and small apartment buildings, three Art Deco office buildings, and a Romanesque Revival stone church.

- **Cherry Street** (designated in 1992): Cherry Street has a period of significance of 1870 to 1946. The residential district contains the highest concentration of nineteenth-century buildings in Santa Rosa, including numerous Queen Anne and Stick-Style mansions. The district is also notable for having been the home of many early civic leaders of Santa Rosa.

- **Olive Park** (designated in 1995): Olive Park has a period of significance of 1891 to 1926. This residential district retains an impressive concentration of turn-of-the-century, middle-class housing within a small area.

- **West End** (designated in 1996): West End’s period of significance ranges from the 1870s to the 1940s. West End is a historic residential neighborhood traditionally associated with Santa Rosa’s Italian immigrants. Many late nineteenth- and early twentieth-century small houses remain.

- **Portion of Burbank Gardens** (designated in 2003): Burbank Gardens’ period of significance ranges from 1875 to the 1940s. This residential district exhibits evolving residential construction over more than a half-century in Santa Rosa. The district’s northern section is populated with single-story houses over raised basements, while its southern section has many cottages and bungalows.
Figure 4.2 Preservation Districts

Legend
- Cherry Street Preservation District (1992)
- Railroad Square Preservation District (1990)
- National Register Historic District (1979)
- St. Rose Preservation District (1990)
- West End Preservation District (1996)

SMART Rail
Undercrossing

Only Preservation Districts that are fully or partially within the Downtown Station Area Specific Plan boundary are shown.

Source: City of Santa Rosa, 2018; Page & Turnbull, 2019; Dyett & Bhatia, 2019
Figure 4.3 Preservation Districts Contributors & Non-Contributors

Only parcels within the Downtown Station Area Specific Plan boundary are shown.

Legend
- Cherry Street Preservation District (1992)
- Railroad Square Preservation District (1990) & National Register Historic District (1979)
- St. Rose Preservation District (1990)
- West End Preservation District (1996)
- Contributor
- Non-Contributor
- Unknown

* SMART Rail
* Undercrossing

Source: City of Santa Rosa, 2018; Page & Turnbull, 2019; Dyett & Bhatia, 2019
Contributors to Cherry Street Preservation District

Contributor to West End Preservation District

Contributor to St. Rose Preservation District

Historic train station – contributor to Railroad Square Preservation District/National Register Historic District
Past and Future Survey Efforts

In addition to designated historic resources, there may be potentially historic resources in the planning area that are of a similar age to designated historic resources but have not yet been identified, or are now becoming “age-eligible” for potential historic designation. This section describes those two categories of properties.

Cultural Heritage Survey

One of the earliest efforts to document Santa Rosa’s historic resources was the Cultural Heritage Survey. The first iteration occurred in 1977 when architect Dan Peterson prepared a cultural resource survey for the City of Santa Rosa. He created districts based on geographical and architectural histories. An updated survey was completed in 1989 by Anne Bloomfield for the Cultural Heritage Board (CHB). It provided a historic context and registration requirements for property types associated with residential, commercial, and industrial development and the Italian community. It also provided recommendations for properties and historic districts for the CHB to designate, as well as recommendations for the City to initiate in order to further develop their preservation program.

According to the Survey Report’s methodology section, a windshield survey identified buildings that appeared to have been constructed before 1946, and tentative districts were identified. Volunteers were trained to survey the potential districts. State of California Department of Parks and Recreation (DPR) 523 survey forms were prepared for the districts and for individual properties that were the most researched and/or were deemed the most vulnerable. The Cultural Heritage Survey documented nine historic districts and 20 individual buildings on State of California Department of Parks and Recreation (DPR) 523 survey forms, of which six districts and seven buildings are wholly or partially located in the planning area and remain extant. The Survey Report specifically stated that the survey effort was limited in scope due to time and funding restraints; thus, eligible properties may have been
Historic Resources

Properties 50 Years Old or Older

In addition to the properties that have been previously evaluated for their eligibility for historic listing or are officially designated historic resources, Figure 4.4 shows any property that is at least 50 years old is potentially historically significant, per the City of Santa Rosa Processing Review Procedures for Owners of Historic Properties (2006) and the California Environmental Quality Act. According to Assessor data, there are 1,011 properties within the planning area that were built up through 1969 (58 percent out of a total of 1,737 properties). Some may have been evaluated in the past and were found eligible for listing in a historic register, but the information may be out of date. Thus, it is possible that many other properties that are not currently designated to the national, state, and local historic registers could be considered historically significant. Also shown in Figure 4.4 are another 102 properties have buildings that are 45 to 49 years old and will therefore soon meet the 50-year threshold.

4.3 Regulatory Framework for Historic Resources

This section examines the national, state, and local regulatory frameworks for the evaluation, designation, and design review of historic resources in Santa Rosa.

Federal

National Historic Preservation Act

The National Historic Preservation Act of 1966, 80 Stat. 915, 16 U.S.C. 470 et seq., as amended, authorizes the Secretary of the Interior to expand and maintain a National Register of districts, sites, buildings, structures, and objects significant in American history, architecture, archeology, engineering and culture. The National Register is an authoritative guide to be used by Federal, State, and local governments, private groups and citizens to identify the Nation’s cultural resources and to indicate what properties should be considered for protection from destruction or impairment.

A “historic property” is any prehistoric or historic district, site, building, structure, or object included in, or eligible for inclusion in, the National Register of Historic Places maintained by the Secretary of the Interior. Historic properties include artifacts, records, and remains that are related to and located within such properties. The term includes properties of traditional religious and cultural importance to an Indian tribe or Native Hawaiian organization and that meet the National Register criteria (36 Code of Federal Regulations (CFR) Part 800 Protection of Historic Properties, Section 800.16 Definitions 11).
101 D Street at 2nd Street

Santa Rosa City Hall, 100 Santa Rosa Avenue

410 – 418 Klute Street

901 4th Street at Hope Street
Figure 4.4 Age-Eligible Properties *

Legend
- Unknown (0)
- 319 parcels
- 50+ Years Old (1870-1969)
- 1,011 parcels
- 45-49 Years Old (1970-1974)
- 102 parcels
- Not Yet Age-Eligible as of 2019 (1975-2016)
- 305 parcels

SMART Rail
Undercrossing

Total # of Parcels in Downtown Station Plan Area: 1,737 parcels

*Year built dates are based on available Sonoma County Assessor data, provided by the City of Santa Rosa.
National Register of Historic Places

Overseen by the National Park Service (NPS), under the Department of the Interior, the National Register was authorized under the National Historic Preservation Act as amended. Its listings encompass all National Historic Landmarks as well as historic areas administered by NPS. The National Register guidance asserts that properties be at least 50 years old to be considered for eligibility. Properties completed less than 50 years before evaluation must be “exceptionally important” (Criteria Consideration G) to be considered eligible for listing.

The Secretary of the Interior’s Standard for the Treatment of Historic Properties

The U.S. Secretary of the Interior has established standards for the treatment of historic properties. The 1995 Secretary of the Interior’s Standard for the Treatment of Historic Properties document outlines specific standards and guidelines for the preservation, rehabilitation, restoration, and reconstruction of historic properties. Preservation standards aim to retain the integrity of a historic resource. Rehabilitation standards guide compatible alterations, additions, and reuse of a historic resource. Restoration standards guide the process of restoring a historic resource to a particular period of time. Reconstruction standards and guidelines apply to new developments that replicate a non-surviving site, landscape, building, structure or object in its historic location. Typically, the Standards for Rehabilitation are used as the benchmark for local design guidelines and design review processes for historic resources.

State

California Register of Historical Resources

The California Register of Historical Resources is an inventory of significant architectural, archaeological, and historical resources in the State of California. Resources can be listed in the California Register through a number of methods. State Historical Landmarks and National Register-listed properties are automatically listed in the California Register. Properties can also be nominated to the California Register by local governments, private organizations, or citizens. The evaluative criteria used by the California Register for determining eligibility are closely based on those developed by the National Park Service for the National Register of Historic Places. A resource eligible for the California Register must be of sufficient age and retain enough of its historic character or appearance (integrity) to convey the reason for its significance.

California State Landmarks

Designated California Historical Landmarks are numbered sequentially as they are listed by the State Historical Resources Commission. California Historical Landmarks numbered 770 and above are automatically listed in the California Register. According to PRC Section 5031(a), to be eligible for California Historical Landmark designation, a property must be of statewide historical importance and must demonstrate its statewide significance by meeting one of the following three requirements:

1. The property is the first, last, only, or most significant historical property of its type in the region. The regions are Southern California, Central California, and Northern California. If a property has lost its historic appearance (integrity), it may still be listed as a site.
2. The property is associated with an individual or group having a profound influence on the history of California.
3. The property is a prototype of, or an outstanding example of, a period, style, architectural movement or construction or is one of the more notable works or the best surviving work in a region of a pioneer architect, designer or master builder.
An architectural landmark must have excellent physical integrity, including integrity of location. An architectural landmark generally will be considered on its original site, particularly if its significance is basically derived from its design relationship to its site.

California Environmental Quality Act

The California Environmental Quality Act (CEQA) is State legislation (codified at Public Resources Code [PRC] § 21000 et seq.) which provides for the development and maintenance of a high quality environment for the present-day and future through the identification of significant environmental effects. CEQA applies to projects proposed to be undertaken or requiring approval from State or local government agencies. CEQA requires the government agency, also called the lead agency, to determine if a project would have a significant effect on historical resources, unique archaeological resources, or tribal cultural resources.

According to Santa Rosa’s Historic and Cultural Preservation Ordinance, any permit or other City approval that would authorize any change in the exterior of a proposed or designated landmark or the exterior of any structure, building, or significant features within a designated or proposed preservation district, is a discretionary permit or approval under CEQA. (See the following “Local” section for information about the Historic and Cultural Preservation Ordinance, landmarks, and preservation districts.)

Local

Historic and Cultural Preservation Ordinance

Adopted in 1988, the Historic and Cultural Preservation Ordinance (Santa Rosa City Code, Title 20 Zoning, Chapter 20-58) created the Cultural Heritage Board. The ordinance provides definitions for landmarks, preservation districts, and procedures for initiating designation.

Cultural Heritage Board

Related to the Historic and Cultural Preservation Ordinance, the establishment, qualifications, and duties of the Cultural Heritage Board (CHB) are outlined in Santa Rosa City Code, Title 20 Zoning, Chapter 20-60.070. The seven-member Board is comprised of citizen volunteers with special expertise or interest in historic preservation. The Board recommends to the City Council designation of landmarks and preservation districts, reviews permits for alterations to landmarks, and promotes public awareness of historic resources.

Historic (-H) Combining District

The purpose of the -H combining district in the City of Santa Rosa’s Zoning Code (Chapter 20-28.040) is to recognize, preserve, and enhance Santa Rosa’s locally-designated historic resources. Applicability of the -H combining district applies to all properties within designated preservation districts and designated landmark properties (see next section for listed historic resources). The -H combining district may be combined with any primary zoning district. In the event of any conflict between the following standards and those of the primary zoning district, those applicable to the -H combining district apply. The -H combining district zoning chapter outlines the standards for site planning and development, including height limits and setbacks. It directs procedural requirements to the Historic and Cultural Preservation Ordinance (Chapter 20-58), including the use of the Processing Review Procedures for Owners of Historic Properties document (2006) and the Secretary of the Interior’s Standards for Rehabilitation.

Santa Rosa General Plan 2035 (2009)

The Santa Rosa Downtown Station Area Specific planning area includes all of the downtown area as defined in the Santa Rosa General Plan 2035, in addition to an area to the west that is included in the Specific Plan. Adopted by the City Council in 2009, the Santa Rosa General Plan 2035 is the result of an extensive planning process, and it provides a
framework for future development in Santa Rosa. Per the General Plan, owners of landmark properties and individual historic properties within a preservation district can take advantage of the State Historic Building Code (which allows safe alternatives to the Uniform Building Code), Housing Rehabilitation Assistance, possible federal income tax credits, technical assistance from the Community Development Department, increased property values, neighborhood protection, and official recognition. The Historic Preservation chapter (Chapter 11) sets forth the following goals (with associated policies) that apply to the planning area:

- HP-A Protect Native American heritage.
- HP-B Preserve Santa Rosa’s historic structures and neighborhoods.
- HP-C Increase public participation in the historic preservation process.

The Processing Review Procedures for Owners of Historic Properties is a document that was adopted by City Council Resolution No. 24694 in January 2001 and numeration was added in September 2006. The document provides a background section on design review procedures in Santa Rosa, including an overview about the California Environmental Quality Act and design review requirements. The second section provides design guidelines for historic properties, including guidelines on accessory buildings, additions, demolition, fences, handicap access, landscaping, new construction, non-contributing building, painting, porches, relocation, repair and replacement, replacement roofing, replacement storefronts, replacement windows and doors, signs, and substitute siding and trim. The third section provides step-by-step procedures for design review and approval.

City of Santa Rosa Design Guidelines (2010)

The purpose of the City of Santa Rosa Design Guidelines is to provide a clear set of design policies to project sponsors such as developers, property owners, architects, designers and public agencies including City projects. These are the primary design criteria which the city staff, boards and commissions and the City Council use to evaluate project proposals. The guidelines apply to all projects that require design review, including most new buildings, the design of subdivisions, infill development; and public improvements such as streets. It includes sections on Neighborhood Design; Core Area; Residential, Commercial & Industrial Outside the Core Area; and Special Design Considerations.

The Design Guidelines includes a section on Historic Districts Within the Downtown Area and Station Area (Section 2: Core Area, Chapter 2.4). This section outlines two goals related to new development in or adjacent to historic districts. Both goals, Goals 2.4.1 and 2.4.2, deal with design sensitivity and compatibility of new development in or next to designated historic districts. There is also a more detailed section on Historic Districts in Section 4: Special Design Considerations, Section 4.7. It refers to the Processing Review Procedures for Owners of Historic Properties with guidelines that focus on compatible design and incremental change.

Santa Rosa Downtown Station Area Specific Plan (2007)

The 2007 Santa Rosa Downtown Station Area Specific Plan is the current Specific Plan for the area that is being updated through this effort. A Vision for the treatment of historic resources and neighborhoods is outlined in Chapter 3: Vision, “A. Enhance Distinct Identity and Character”:

- Capitalize on Railroad Square’s historic transportation role and reinforce this unique location while strengthening the coherent sense of place.
- Build on the momentum created by the reunification of Courthouse Square and extend the positive pedestrian qualities of 4th Street to other parts of the Courthouse Square area.

- Retain and restore excellent examples of historic industrial character existing in the railway alignment including the historic water tower and the Fitzgerald Building on Roberts Avenue, and use this character as a context for new development in these areas.

Historic resource topics are briefly discussed in Chapter 4: Land Use with regard to the Railroad Square Sub-Area and the Courthouse Square Sub-Area. Historic residential sub-areas are discussed together with other residential sub-areas. Policies from the 2007 Plan related specifically to the City of Santa Rosa’s Preservation Districts or individual historic resources are not discussed individually in this report.

Climate Action Plan (2012)

The purpose of the Climate Action Plan is to present measures which will reduce local greenhouse gas emissions, to meet state, regional, and local reduction targets, and to streamline future environmental review of projects within Santa Rosa by following the California Environmental Quality Act (CEQA) Guidelines and meeting the Bay Area Air Quality Management District’s (BAAQMD) expectations for a Qualified GHG Reduction Strategy. There are two measures in the Climate Action Plan that specifically address historic resources, the first is Measure 1.2 which deals with energy efficiency in existing or retrofitted historic buildings and the second is Measure 1.5 which focuses on cool roofs and pavement alterations for historic structures.

Housing Action Plan (2016)

The Housing Action Plan was prepared in 2016 to address the City’s ongoing unmet housing needs and to implement the City’s General Plan Housing Element. Particular to the planning area, Program action #4 identifies “opportunity sites,” parcels, or groups of parcels with good physical, regulatory, and market potential for multifamily and mixed-use development. The downtown area is targeted for this program because development can utilize existing infrastructure and has the capacity of accommodate density. The Housing Action Plan does not discuss historic resources.

Resilient City Design Measures (2018)

Recently adopted in 2018, the Resilient City Design Measures are described in Santa Rosa City Code Title 20 Zoning: Chapter 20-16. They are intended to address housing needs and economic development within the city following the Tubbs and Nuns fires of October 2017. The design measures do not require a prior use permit for a number of uses in specific Planned Development Districts. They also exempt new development and major remodels for child care, lodging, and residential development in Priority Development Areas and the Downtown Core from design review before the Design Review Board for a period of three years (instead, they will go to the Zoning Administrator through a Minor Design Review process). Buildings in the -H Combining District, which include properties within Preservation Districts and individual Santa Rosa landmarks, are not subject to Resilient City Design Measures. However, properties that are designated to national and state historic registers but not locally, or properties that are age-eligible for potential historic significance but not yet evaluated could be affected by Resilient City Design Measures.
4.4 Key Findings and Planning Considerations

- The planning area contains known archaeological and Native American resources and there is a high potential for discovering additional Native American sites, particularly adjacent to Santa Rosa Creek and Springs Creek.

- The City’s Cultural Heritage Survey (CHS), originally completed in 1977 and updated in 1989, identifies six historic districts and seven historic buildings in the planning area; however, some of the evaluations on which it was based do not conform with current best practices for CEQA.

- The last update to the CHS was completed 30 years ago, and since that time a number of properties in the planning area have become “age-eligible” for historic designation, meaning they are over 50 years old and require some level of evaluation to determine whether or not they are historically significant.

- Currently, properties are evaluated on a case-by-case basis for CEQA purposes as development is proposed. A comprehensive update to the CHS that considered “age-eligible” properties and applies current best practices for evaluation would provide more certainty for downtown development and streamline the project approval process.

- While buildings in the -H Combining District established in the Zoning Code to protect historic resources are exempt from Resilient City Design Measures, “age-eligible” properties that have not yet been evaluated for historic significance could potentially be adversely affected.

- Rehabilitation, adaptive reuse, and other measures can be implemented downtown to protect the scale and cohesion of existing older building stock so that the downtown will retain a unique sense of unique place as development and redevelopment occurs.
5. MOBILITY AND TRANSPORTATION
This chapter summarizes existing conditions and issues relevant to the roadway network, transit, walking and bicycling, and parking in the proposed planning area.

5.1 Street Network

Existing Street Network

Downtown Santa Rosa and the Specific Plan area are linked to the primary regional roadway network by the US 101 and State Route (SR) 12 freeways. US 101 connects Santa Rosa and Sonoma County to Mendocino County and beyond to the north, and San Francisco and beyond to the south. SR 12 connects Santa Rosa to Sebastopol to the west, and to the east connects to the cities of Sonoma and Napa, as well as Interstate 80 in Solano County. Freeway interchanges within the planning area include the Downtown-Third Street and College Avenue interchanges on US 101. Access to US 101 and SR 12 freeways is via interchanges at Brookwood Avenue-E Street and Dutton Avenue. Following are the major arterials that serve as key vehicular linkages to and within the planning area:

<table>
<thead>
<tr>
<th>Major North-South Arterials</th>
<th>Major East-West Arterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mendocino Avenue</td>
<td>College Avenue</td>
</tr>
<tr>
<td>Santa Rosa Avenue</td>
<td>Third Street</td>
</tr>
<tr>
<td>Cleveland Avenue</td>
<td>Fourth Street</td>
</tr>
<tr>
<td>Brookwood Avenue</td>
<td>Ninth Street</td>
</tr>
<tr>
<td>B Street</td>
<td>Sonoma Avenue</td>
</tr>
<tr>
<td>E Street</td>
<td>Sebastopol Road</td>
</tr>
<tr>
<td>Dutton Avenue</td>
<td>Maple Avenue</td>
</tr>
</tbody>
</table>

US 101 bisects the planning area. The primary corridor connecting the east and west sides of the Planning area is Third Street, which as noted above has an interchange at US 101. Secondary east-west connections crossing US 101 include Ninth Street and Sixth Street. To the west of US 101, a continuous north-south surface street corridor is formed by the combination of Cleveland Avenue, Wilson Street, Railroad Street, and Olive Street. The east side of US 101 has a “grid” network of streets. Within the core downtown area, B Street serves as a primary north-south corridor. Other major north-south connections to areas beyond the planning area include Mendocino Avenue, which extends northward from downtown, and Santa Rosa Avenue which extends southward. On the eastern side of downtown, E Street serves as the primary north-south corridor and includes an interchange south of the Planning area at SR 12.

Vehicular access to the downtown Sonoma-Marin Area Rail Transit (SMART) commuter rail station is available at the western termini of Fourth and Fifth Streets in Railroad Square. While the SMART doesn’t manage any parking inventory at the station, the City of Santa Rosa’s manages a pick-up and drop-off zone, hourly rate parking, and long term parking within two blocks and at the Downtown Transit Mall. The downtown Transit Mall is located on Second Street between B Street and Santa Rosa Avenue and is adjacent to a parking deck. As with the SMART station, while the Transit Mall does encounter some private vehicle pick-up and drop-off activity on its periphery, it is not a major auto traffic generator., and there is currently sufficient paid public parking in the form of on-street and City of Santa Rosa managed parking lots and garages as detailed in the Santa Rosa Citywide Progressive Parking Management Strategy study from 2017.
Changes since 2007 Plan

Several significant changes to the circulation network have occurred since the 2007 Downtown Station Area Specific Plan was adopted. The most prominent change has been the reunification of Courthouse Square, reverting to the historic street pattern that existed prior to the connection of Santa Rosa Avenue to Mendocino Avenue through the center of the square. The project also re-established two local streets on the periphery of the square, Hinton and Exchange Avenues. Several additional changes made by the City were completed to accommodate the shift in traffic patterns resulting from the reunification, including conversion of Tenth Street to one-way eastbound, conversion of Fifth Street to a two-way street between B Street and Mendocino Avenue, as well as lane striping and traffic signal modifications to facilitate increased use of the B Street corridor for north-south traffic within and through downtown. Since reunification, traffic volumes on Santa Rosa Avenue south of First Street have dropped by approximately 35 percent, and volumes on Mendocino Avenue-Healdsburg Avenue south of College Avenue have dropped by approximately 20 percent. Much of this volume decrease is likely attributable to a reduction in the number of drivers attempting to bypass congestion on US 101 by using the parallel Santa Rosa Avenue-Mendocino Avenue corridors; most of these drivers were passing through downtown rather than traveling to or from downtown and are now likely remaining on the freeway.

Another substantial change to the circulation network since 2007 is the connection of Sixth Street under US 101 via a new underpass. This change improved east-west connectivity not only for drivers but also for pedestrians and bicyclists. As part of the new connection, the segment of Morgan Street between Fifth and Sixth streets was converted to one-way, and a new traffic signal was added at Davis Street/Sixth Street.

The City has also added on-street bicycle lanes or bicycle boulevards on several Planning area corridors including Third Street, Santa Rosa Avenue, B Street (southbound), Sonoma Avenue, the Sixth-Seventh Street “linkage” between Davis Street and Mendocino Avenue, Ninth Street to the west of Cleveland Avenue, Humboldt Street, the Joe Rodota trail and Prince Memorial Greenway, and Sebastopol Road to the east of the SMART tracks. In some cases, the addition of these bike lanes also involved the elimination of one or more vehicle through traffic lanes. A multi-use path along the SMART tracks from Third Street to Fourth Street and Seventh Street to College Avenue has also been added.

Also relevant to the auto circulation network, are the changes in public transit available. First, Transit service has substantially changed since 2007 as the City completed the first comprehensive re-design of its CityBus system (i.e. which proposed traffic related solutions like transit signal priority corridors) as detailed in 5.4. Additionally, SMART

Third Street looking east toward downtown from the Plaza
Downtown Station Area Specific Plan Update
DRAFT Existing Conditions Report

commuter rail service commenced operation in 2017. Several streets in the Planning area cross the SMART tracks including College Avenue, Ninth Street, Eighth Street, Seventh Street, Sixth Street, Third Street, and Sebastopol Road. All crossings include railroad crossing gates, warning bells, lights, pedestrian enhancements, and design treatments that preclude drivers from maneuvering around lowered gate arms. Because Santa Rosa is a designated “quiet zone,” engineers only sound the train horn at crossings when they observe a potential safety concern. Based on the current SMART schedule, gates are typically activated three to four times each during the a.m. and p.m. peak hours, with northbound and southbound trains serving the Railroad Square station within several minutes of one another.

5.2 Traffic Conditions

Existing Traffic Volumes

Intersection and roadway segment traffic counts were obtained from the City for locations throughout the Planning area for the years 2017-2019, while school was in session. This data was used to estimate average daily traffic (ADT) volumes on key streets as shown in Figure 5-1.

Level of Service

The Concept of Level of Service

In transportation/traffic studies, Level of Service (LOS) has traditionally been determined for vehicle traffic at intersections and on roadway segments based on vehicle delays and speeds. LOS is intended to be a mechanism for communicating the performance of a transportation facility in a non-technical manner, using the results of detailed transportation analyses. Letter-based categories ranging from LOS A to LOS F are used to capture the performance of a facility. With respect to automobile facilities, LOS A represents conditions in which drivers encounter minimal delays, whereas LOS F represents congested conditions in which drivers encounter substantial delay and difficulty.

Fourth Street at Mendocino Avenue after the reunification of Courthouse Square

Sixth Street underpass completed in 2013
Figure 5.1 Existing Average Daily Traffic Volumes

Legend

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxxx</td>
<td>Existing Average Daily Traffic Volume</td>
</tr>
<tr>
<td>------</td>
<td>SMART Rail</td>
</tr>
<tr>
<td>------</td>
<td>Undercrossing</td>
</tr>
</tbody>
</table>

Source: Quest, 2019; City of Santa Rosa, 2018; Page & Turnbull, 2019; Dyett & Bhatia, 2019
progressing. The use of LOS has been applied to automobile facilities for many years.

It is important to distinguish that an automobile facility operating at LOS A may be undesirable as it may be characterized as having excessive capacity that can adversely affect other travel modes (through unnecessarily wide pedestrian crossing distances and promotion of inappropriately-high speeds, for instance). Further, achieving a high automobile LOS can result in disproportionately high construction and maintenance costs. In many cases, automobile operation in the LOS D to LOS E range during peak hours in built-out urban areas may reflect a reasonable balance among its influences on other travel modes, auto mobility, and cost of constructing and maintaining the facility itself. Some communities have also chosen to accept automobile LOS F operation or eliminate consideration of LOS altogether in areas where non-auto modes are prioritized, such as in downtown and/or transit-oriented areas including downtown Santa Rosa.

Standards

Policy T-D-1 of the Santa Rosa General Plan states that the City will maintain a Level of Service (LOS) D or better along all major corridors, though exceptions to meeting this standard are allowed downtown. Of the four analyzed roadway corridors, the two segments of Third Street and the length of B Street would be considered downtown and not subject to the LOS D standard. Because the College Avenue corridor runs along the boundary of (versus within) downtown, as does a portion of the Dutton Avenue corridor, for the purposes of this evaluation the LOS D standard is applied on these streets.

Methodology

The roadway segment Level of Service methodology found in Chapter 17, "Urban Street Segments," of the Highway Capacity Manual, Transportation Research Board, 2010, is the basis of the automobile LOS analysis. This method does not address the capacity of a facility, but rather determines a LOS based on the calculated percentage of the street's base free-flow speed. In essence, congestion occurs as traffic volumes increase, and the overall travel speed is reduced due to increased delay. Therefore, the slower the speed, the lower that speed is as a percentage of free-flow speed, and the lower the Level of Service. Corridor levels of service were assessed using the software applications Synchro and Simtraffic. Synchro is used to analyze operation at each of the signalized intersections along a segment, which is where most delay is encountered. Simtraffic is an extension of Synchro that simulates vehicle progression along a corridor, considering the operation of individual signals as well as influences such as interactions among signals, queue spillback, and merging activity. The average of ten randomly-seeded Simtraffic runs was used to determine average travel speeds along the study corridors. Note that the average travel speeds include the time drivers spend both moving and while stopped; in other words, they truly represent an average rather than an actual moving speed maintained by drivers along the entire length of the segment.

Traffic volumes obtained within the past two years were used for the analysis, as was existing signal timing and phasing parameters obtained from the City. Roads chosen for analysis are major arterials that both provide primary access to the Specific Plan area, would be most likely to be affected by future growth, and were also analyzed in the original DSASP and its EIR. Traffic volume date for Santa Rosa Avenue was collected after preparation of this Existing Conditions Report but will be added to the DSASP Update EIR. Traffic volumes within the downtown area are generally higher during the weekday afternoon commute than in the morning, and traffic congestion more apparent, so the evaluation focuses on conditions during the p.m. peak hour.

Existing Traffic Conditions

Under existing conditions, all the study segments are operating acceptably at LOS D or better. A summary of the roadway segment level of service calculations is shown in Table 5-1.
Vehicles Miles Traveled (VMT)

Background

A common indicator used to quantify the amount of motor vehicle use is Vehicle Miles Traveled, or VMT. VMT represents the total number of miles driven per day by persons traveling to and from a defined area. Many factors affect VMT, including the average distance residents commute to work, school, and shopping, as well as the proportion of trips that are made by non-automobile modes. Areas that have a diverse land use mix and facilities for non-automobile modes, including transit, tend to generate lower VMT than auto-oriented suburban areas where land uses are typically segregated. Further, cities and regions where the jobs/housing ratio is balanced generate a lower VMT than areas where most residents commute long distances to work.

In California, the use of VMT instead of LOS as a metric to assess transportation-related environmental impacts has been adopted as part of recent updates to the California Environmental Quality Act (CEQA). Jurisdictions must complete the switch from LOS to VMT in their environmental documents by July 1, 2020. Cities and Counties may establish their own VMT-based environmental significance thresholds; while Santa Rosa has not yet adopted metrics, many jurisdictions that have are using a “per capita” VMT metric, with a project having a less than significant environmental effect if its per capita VMT is projected to be 15 percent or more below the city-wide or regional average. From an environmental perspective, development that generates less per capita VMT reflects less auto usage, and correspondingly, lower fuel consumption and production of greenhouse gas emissions. Areas with a diversity of land uses, densities, walking and bicycling networks, and proximity to transit generate less VMT than, for instance, low-density suburban residential developments or isolated suburban office complexes.

Table 5-1: Existing Peak Hour Roadway Segment Levels of Service

<table>
<thead>
<tr>
<th>Roadway Segment Direction</th>
<th>Free-Flow Speed (mph)</th>
<th>Calculated Average Speed (mph)</th>
<th>Percent Free-Flow Speed</th>
<th>Auto Level of Service (LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Ave — Dutton Ave to Brookwood Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound</td>
<td>35</td>
<td>16</td>
<td>46%</td>
<td>D</td>
</tr>
<tr>
<td>Westbound</td>
<td>35</td>
<td>16</td>
<td>46%</td>
<td>D</td>
</tr>
<tr>
<td>B St — Healdsburg Ave to First Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound</td>
<td>25</td>
<td>14</td>
<td>56%</td>
<td>C</td>
</tr>
<tr>
<td>Southbound</td>
<td>25</td>
<td>12</td>
<td>48%</td>
<td>D</td>
</tr>
<tr>
<td>Third St — Dutton Ave to B St</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound</td>
<td>30</td>
<td>15</td>
<td>50%</td>
<td>D</td>
</tr>
<tr>
<td>Westbound</td>
<td>30</td>
<td>14</td>
<td>47%</td>
<td>D</td>
</tr>
<tr>
<td>Third St — B St to Brookwood Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound</td>
<td>25</td>
<td>12</td>
<td>48%</td>
<td>D</td>
</tr>
<tr>
<td>Westbound</td>
<td>25</td>
<td>11</td>
<td>44%</td>
<td>D</td>
</tr>
<tr>
<td>Dutton Ave — Santa Rosa Creek to Sebastopol Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound</td>
<td>30</td>
<td>16</td>
<td>53%</td>
<td>C</td>
</tr>
<tr>
<td>Southbound</td>
<td>30</td>
<td>14</td>
<td>47%</td>
<td>D</td>
</tr>
</tbody>
</table>
VMT and Proximity to Transit

The recently-adopted CEQA Guidelines Section 15064.3(b)(1) addresses the potential VMT impacts associated with land use projects in transit-oriented areas, indicating that “Generally, projects within one-half mile of either an existing major transit stop or a stop along an existing high-quality transit corridor should be presumed to cause a less than significant transportation impact.” Public Resources Code 21064.3 defines a “major transit stop” as a site containing an existing rail transit station, a ferry terminal served by either a bus or rail transit service, or the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods. Public Resources Code 21155(b) defines a “high-quality transit corridor” as an existing corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.

Based on this guidance, the Santa Rosa Downtown Specific Plan contains two major transit stops within its boundaries, including the SMART station in Railroad Square and the downtown Transit Mall. Additionally, the following CityBus transit routes operate at 15-minute headways:

- Route 1, Mendocino Avenue/Coddingtown Mall – operates every 15 minutes along the B Street corridor to the north of the downtown transit mall
- Routes 2/2B, Sebastopol Road – operates every 15 minutes between the downtown transit mall and Sebastopol Road, including connecting segments of Third Street, Railroad Street, and Olive Street
- Route 3, Santa Rosa Avenue and Route 5, Petaluma Hill Road – these combined routes operate every 15 minutes on the Santa Rosa Avenue corridor to the south of the downtown transit mall

The areas within the planning area boundaries that are within one-half mile walking distance of these major transit facilities are shown in Figure 5-2. Available walking routes include public streets and pathways, and distances are measured along the actual walking route rather than a simple radius around major transit stops. This approach helps to take account the “barrier” effects created by US 101 as well as the longer walking distances created by areas with larger block sizes. Based on the adopted CEQA guidelines, VMT impacts associated with development in these areas can be presumed to be less-than-significant. Most of the Planning area is included; outliers include the far northeast and southeast corners of the area near Brookwood Avenue, a portion of the West End neighborhood, the Maxwell Court neighborhood, and the Imwalle Gardens area on West Third Street.
Modeling VMT

Sophisticated travel demand models are often used, where available, to produce VMT estimates. The travel demand model operated by the Sonoma County Transportation Authority (SCTA) can produce VMT estimates and was used for the purposes of this analysis. SCTA’s model outputs VMT data at the traffic analysis zone (“TAZ”) level; in the Planning area, these TAZ’s typically span several blocks. The model estimates the VMT associated with the aggregate land uses in each TAZ and can distinguish trips that are home-based. Currently, the model does not isolate VMT data by land use or differentiate subtleties such as whether a home-based work trip originated at a residence or ended at a job within the TAZ, but SCTA is currently investigating methods to extract this more detailed data from the model.

The Downtown Santa Rosa Station Area Plan includes a diverse group of land uses, encompassing the largest downtown district in Sonoma County with large employment, retail, and hospitality functions, as well as a mix of residential types ranging from single-family homes to medium density multifamily housing. Given this diverse land use mix and the current capabilities of the SCTA travel demand model, it was determined that assessing home-based VMT per “service population” would be the most appropriate metric. The service population consists of the sum of the residential population plus the number of employees working in the area.

Existing Specific Plan Area VMT

Approximately 325,800 daily miles of vehicle travel are associated with the existing land uses within the planning area boundaries. Approximately 140,100 of these daily miles are home-based, meaning that one end of the trip begins or ends at home. The corresponding home-based VMT per service population is 7.98 miles per person. This is approximately 31 percent lower than the countywide average and 18 percent lower than the citywide average.

The regional VMT estimates produced by the SCTA model are summarized in Table 5.2.

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>VMT (Total)</th>
<th>VMT (Home Based)</th>
<th>Service Population</th>
<th>Home-Based VMT/Service Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonoma County</td>
<td>10,872,200</td>
<td>7,828,000</td>
<td>673,750</td>
<td>11.62</td>
</tr>
<tr>
<td>City of Santa Rosa</td>
<td>3,721,100</td>
<td>2,307,100</td>
<td>237,388</td>
<td>9.72</td>
</tr>
<tr>
<td>Downtown Station Area Specific Plan</td>
<td>325,800</td>
<td>140,100</td>
<td>17,561</td>
<td>7.98</td>
</tr>
</tbody>
</table>

Note: VMT expressed in miles (mi); Service Population = population + employment
Figure 5.2 Areas Within One-Half Mile of High-Quality Transit

Legend
- ▲ Bus Stop on High-frequency Route
- 1/2 Mile Walking Distance from High-frequency Bus Stops
- 1/2 Mile Walking Distance from SMART Station & Transit Mall
- SMART Rail
- Undercrossing

Source: Quest, 2019; City of Santa Rosa, 2018; Page & Turnbull, 2019; Dyett & Bhatia, 2019
5.3 Street Network Opportunities

The auto circulation network within the planning area is largely built out, and most future development will connect directly to existing public streets. Following are several locations where new streets may be built, and opportunities may exist to modify existing streets. These potential street network opportunities are shown in Figure 5-3.

New Streets

The 2007 Downtown Station Area Specific Plan identifies several potential new streets. These include an extension of Roberts Avenue under SR 12 to Sebastopol Road, a new north-south street between Third and Sixth Streets serving the property immediately west of the SMART station, a new local street in the Inwalle Gardens area on West Third Street, an extension of Donahue Street from West Ninth Street to Maxwell Court, and re-establishing a connection of Fourth Street between Morgan Street and B Street (bisecting the existing Santa Rosa Plaza mall). The Roberts Avenue extension was included in the 2007 Specific Plan, depicted as realigning to run alongside the SMART path and railroad tracks through an existing freeway underpass. Since that time, the City has identified another option which would extend Roberts Avenue more directly through a new freeway underpass, connecting to Sebastopol Road at the existing intersection of Timothy Road.

Opportunity: Mendocino Avenue

Within the planning area, the reunification of Courthouse Square has resulted in a shift in traffic volumes from the Mendocino Avenue corridor to the B Street corridor, particularly in the northbound direction. Because of this change, there is potential opportunity to reconsider the function and configuration of Mendocino Avenue to the north of Courthouse Square, between Tenth and Fourth Streets. This segment currently has two northbound lanes and one southbound lane, but based on the decrease in traffic volumes may only need one through lane in each direction. There may be potential to remove one vehicle travel lane on the street, reallocating the street width to provide on-street bike lane(s), wider sidewalks, landscaped medians, and/or reconfigured parking.
Figure 5.3 Street Network Opportunities

Legend
- New Streets Identified in 2007 Plan
- Potential Opportunity to Reallocate Lanes
- Roundabout Opportunity
- SMART Rail
- Undercrossing

Source: Quest, 2019; City of Santa Rosa, 2018; Page & Turnbull, 2019; Dyett & Bhatia, 2019
Opportunity: E Street

There may also be opportunity to reexamine the function and allocation of lanes on E Street between College Avenue and Sonoma Avenue. The corridor currently has two travel lanes in each direction with no center turn lane and is identified as having future on-street bicycle lanes in the City’s Bicycle and Pedestrian Master Plan. The section between College Avenue and Seventh Street also runs along the frontage of Santa Rosa Junior High School. Two lanes of traffic in each direction are unneeded to support existing traffic volumes, particularly to the north of Fourth Street, though it will also be necessary to consider the potential future traffic volumes anticipated to occur upon buildout of the Specific Plan as part of the planning process. It should be noted that CityBus operates on E Street with two routes; one operates between Third and Fourth connecting downtown with Montgomery Village and another routes service the Middle School during bell times, any changes on E St.

5.4 Transit

Downtown Santa Rosa and the Specific Plan area are served by a variety of transit operators (SMART, Santa Rosa CityBus, Sonoma County Transit, Golden Gate Transit and Mendocino Transit, Greyhound), providing connections to and from local routes and regional destinations. Employment is densely concentrated in downtown Santa Rosa, making the planning area a major commute destination and transit hub for Sonoma County. The planning area includes a transit mall for bus connections, and the SMART Downtown Santa Rosa Station.

Existing Services

CityBus Service

The City of Santa Rosa provides the most rides for local fixed-route bus service and demand-responsive paratransit service in Sonoma County. Total system-wide ridership was approximately 2.2 million in FY 2015-16 and decreased to approximately 1.8 million in FY 2018-19 with approximately 6000 rides per weekday. Ridership on CityBus is within the top ten transit providers in the Bay Area. In total, there are 14 routes, 12 of which operate seven days a week. With the completion of the Reimaging CityBus Plan, Phase I implementation in 2017, CityBus now has three corridors (4 routes) operating 15-minute frequency during weekdays, 6 routes operation on 30-minute frequency and a remaining 4 route operating on 60-minute headways. Most routes begin service between 6:00 a.m. and 7:00 a.m. Monday – Saturday, and finish service between 7:30 p.m. and 8:30 p.m. On Sundays, service is truncated, with routes starting after 10:00 a.m., and ending before 5:15 p.m.¹

Downtown Station Area Specific Plan Update
DRAFT Existing Conditions Report

5-14 | Mobility and Transportation

The system is oriented around five main transfer centers, with nearly all routes stopping at the main Transit Mall in downtown, radiating out towards the city's neighborhoods and residential areas.

The Santa Rosa Transit Mall is the busiest Transit Hub in the North Bay served by five operators and provides an affordable, accessible and sustainable connection to jobs, education, shopping and recreation for the region. The Transit Mall went through a significant renovations in 2012.

Unlimited Ridership Programs

CityBus has worked to remove barriers to using transit by expanding fare free programs. Santa Rosa Junior College students started using a Student Transportation Fee (STF) passed in spring 2017 to enter into an unlimited transit ridership program with the transit providers within Sonoma County (Sonoma County Transit, Petaluma and Santa Rosa CityBus). CityBus started tracking the SRJC ridership in September 2017. Ridership averaged about 10,000 rides per month for the first semester of the program and as of Spring 2019 average ridership per month is over 15,000 per month.

Additional Unlimited ridership programs are in place for Veterans (average 3000 rides per month) and people living with disabilities that are eligible for paratransit (average 4000 rides per month).

The City is looking into expanding Unlimited Ridership programs employers, developments, business districts, residence and other interested entities.

Technology

The transportation sector is being significantly altered by the technology sector. Perhaps the most significant technology improvement for transit has been access to route planning and real-time bus arrival information. CityBus’ contractor AVAIL publishes a GTFS (General Transit Feed Specification) feed specification that allows application developers to pick it up and provide route planning and realtime information on the CityBus Routes. Currently, CityBus provides this realtime information via text, voice, MyStop app or at your desktop. Additionally, this feed is consumed by MTC’s 511.org, Google and the Transit App. This information is available for most transit systems throughout the Bay Area, so for traveling regionally these services can provide access to the needed information from the convivence of a rider’s phone.

Paratransit

The City of Santa Rosa offers next-day ADA Paratransit transportation service seven days a week to those who are unable (temporarily or permanently) to use Santa Rosa CityBus due to a disability or health related condition. Ridership on paratransit was approximately 44,000 in FY 2015-16 and decreased to approximately 35,000 in FY 2018-19 with approximately 125 rides per weekday. This service is provided within three-quarters (¾) of a mile from existing CityBus routes as part of the requirements of the Americans with Disabilities Act (ADA). Paratransit eligible riders can ride the fixed-route CityBus for zero costs, a program to both save money for riders and the City and also promote independent living for persons living with a disability.

The service is shared-ride public transportation that is available for all trip purposes (including shopping, higher education, medical appointments, and work). The City of Santa Rosa takes pride in providing high quality, safe, reliable and courteous transportation service.

Deviated-fixed route

CityBus operates a deviated-fixed route in a cost sharing arrangement with the Oakmont Village Association. This service provides services to the Oakmont Community and the general public by picking up within Oakmont ¾ from the route and providing one trip per day to a food shopping destination.

CityBus managed a free shuttle connecting the downtown SMART station with Santa Rosa garages and Old Courthouse Square from
December 2017 to November 2018. It was discontinued due to low ridership.

Reimagining CityBus

Between March 2015 and August 2016, the City of Santa Rosa completed a comprehensive re-design of its CityBus system, called Reimagining CityBus. Reimagining CityBus included over 100 public outreach events, meeting and stakeholder consultations, with riders and residents directly helping to shaping the final design. The City's Transit Planning Team presented the community with a blank slate and gave residents an opportunity to share what they wanted to see in the new CityBus system. The result of Reimagining CityBus is a new transit system for Santa Rosa that features: 15-minute service in high-ridership corridor, more direct routes, more 2-way service to help reduce transit travel time and a bus system more convenient and useful for riders. The Santa Rosa City Council was actively involved in developing the new bus system and adopted the Final Plan in August 2016.

The new bus system is essentially a roadmap for creating a modern transit system to meet the current and future needs of Santa Rosans. The redesigned bus system is organized into two phases - Phase One was launched in May 2017, and Phase Two which includes features such as improved rapid bus using transit signal priority corridors, improved late night and weekend service, will be incorporated as funding becomes available for these transit system improvements and growth through 2025.

The Reimagining CityBus Final Report detailed the design approach and guidelines that will drive route changes into the future. Including route types (rapid, trunk, local or circulators) designations and service design principles (frequency, direct, bi-directional, anchor points, spacing between routes and final connectivity. These approaches are further flushed out in the goals, objects, performance measures and service standards detailed in the Short-Range Transit Plan (SRTP) pursuant to the Metropolitan Transportation Commissions requirement to periodically evaluate serve and detail a ten years' service, capital and financial plan.

Phase I of Reimagining was the most significant change in transit service that the City of Santa Rosa has seen since transit service started in 1958. To implement the new bus system CityBus renumbered all the bus routes (low numbers for frequent routes on high ridership corridors, and high numbers for routes with lower frequency and ridership), developed a new system map that included all the regional transit service, developed all new schedules for each route, redesigned bus stop signs with information on accessing real-time bus arrival information at each stop, and reviewed all bus stops and pedestrian facilities to improve pedestrian access. The most significant change made with Reimagining Phase I was the 15-minute frequency on Mendocino Ave., Sebastopol Rd and Santa Rosa Ave. Overall ridership has remained steady even through the major service change.

Regional Transit Service and Connections

The Santa Rosa Transit Mall is the busiest Transit Hub in the North Bay. With over 3000 trips departing the Transit Mall each week (751,500 trips per year). In addition to local CityBus fixed route service, Downtown Santa Rosa is served by four regional bus transit providers (Sonoma County Transit, Golden Gate Transit and Mendocino Transit, Greyhound), and one regional commuter rail (SMART). These services are summarized below in Table 5-3. Local and regional routes serving Downtown Santa Rosa are illustrated in Figure 5-4. Together, these services provide regional connections to other cities in Sonoma County, Marin County, Mendocino County, San Francisco and Contra Costa County. Sonoma County Transit provides direct services to the following towns in the county Cloverdale, Healdsburg, Windsor, Guerneville, Sebastopol, Cotati, Rohnert Park, Petaluma and Sonoma. Sonoma

County Transit ends their routes at the County Center in North Santa Rosa which provides additional transit coverage on Mendocino Avenue and Santa Rosa Avenue.

The MTC as the transportation planning, financing and coordinating agency for the nine-county San Francisco Bay Area plays a significant role in coordinating regional transit services, including the Clipper Program, the Regional Eligibility Database for paratransit services, and wayfinding programs.

CityBus engages in significant coordination efforts with Sonoma County Transit, Petaluma Transit, Golden Gate Transit and SMART through monthly meetings at Sonoma County Transportation Authority (SCTA). SCTA recently conducted a Transit Sonoma County Transit Integration and Efficiency Study (TIES) looking at the communication, coordination, collaboration and consolidation possibilities between CityBus, Sonoma County Transit and Petaluma.

SMART

The SMART train line was completed in 2017 and provides direct connections between Santa Rosa and San Rafael, with service to Larkspur starting in late 2019. Since SMART launched service on Aug. 25, 2017, it has carried nearly 1.4 million passengers. In Santa Rosa there are two stations: The Downtown Station, the city’s main SMART train station in Railroad Square which is within the Downtown Station Area and the North Station on Guerneville Rd. According to a 2018 ridership survey, the Downtown Station ranks in the top three destination stations, with 13 percent of riders alighting on weekdays, and 18 percent alighting on weekends. SMART operates with 30-minute headways during weekday a.m. and p.m. peak hours, and one-hour headways on weekends.

CityBus service provides ten (10) buses per hour serving the Downtown SMART Station on weekdays. There are three bus stops near the Downtown train station, all accessible via a pedestrian path next to the tracks. The City is currently piloting a Commuter Parking Permit that offers a 50% discount on monthly permits in Garage 12 (555 1st St) for commuters using SMART or any other transit service. CityBus had piloted a free shuttle connecting the downtown SMART station with Santa Rosa garages and Old Courthouse Square from December 2017 to November 2018. It was discontinued due to low ridership.

Regional Fare

The Bay Area has a regional fare payment system called Clipper. Clipper is the all-in-one transit card for the Bay Area. Passengers can add value to their card and ride any transit system in the Bay Area (seniors, youth and persons with disabilities all received discounts on all transit systems with this card). With Clipper riders received a discount when transferring between SMART, CityBus, Golden Gate Transit and Sonoma County transit.

Transit Demand

Population and employment density are the two primary factors that influence transit demand throughout Santa Rosa and help to determine the frequency of transit service that is warranted in a given area. Figure 5-5 presents the citywide composite transit propensity index that was created as part of the 2016 Reimagining CityBus analysis prior to the current route changes. The shading represents the conceptual level of

transit service that could be supported by the population and employment density in each block today. The highest employment and population densities are clustered in the Downtown Station Area, indicating that these blocks already present enough transit demand to support service every 10 to 15 minutes. With the implementation of the Reimagining Phase I, CityBus started providing 15-minute frequency within this area in 2017. In the future, as population and employment density increase in the planning area, the capacity to support higher-frequency transit will continue to grow.

Pedestrian and Bicycle Network

Pedestrian Network

Nearly every person is a pedestrian at some point during their day, as all trips transition to walking near their ends, whether we are dropped off, ride a bicycle, drive a car or take transit. The downtown planning area is an inviting environment for people walking and connecting to other modes. The street network includes a robust network of streets with sidewalks and, pedestrian paths such as Comstock Mall and the Prince Memorial Greenway Trail, providing consistent pedestrian connectivity throughout the planning area.

However, there are also elements of the existing street and highway network that present barriers to pedestrian access. Highways US-101 and California State Highway 12 limit the street grid connectivity and require pedestrians to travel across via under- and over-passes in some locations. Both connect to the local street network via ramps, where pedestrian crossings are restricted to minimize pedestrian conflict and vehicle delay at intersections.
Figure 5.4 Transit Network

- Bus Stop
- Bus Route
 - Santa Rosa City Bus
 - Sonoma County Transit
 - Golden Gate Transit
- Undercrossing
- SMART Rail

Source: Nelson Nygaard, 2019; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Figure 5-5: Composite Transit Demand Index Map (City Bus Analysis 2016)

A few downtown intersections have unmarked crosswalks, which tends to prioritize vehicle operations over pedestrian access. In addition to the intersections serving highway ramp connections, many of the local streets surrounding the Santa Rosa Plaza Mall include marked crossings on one or two legs of the intersection but require pedestrians to take circuitous routes in order to cross in an unmarked location. Though the intersection at Sixth Street and A Street is designed to address sight visibility, a pedestrian walking on the south sidewalk on Sixth Street, approaching A Street from Morgan Street, and plans to cross Sixth Street to travel north on A Street, they must either cross to the north side at Morgan Street, prior to reaching A Street, or travel an additional block east along Santa Rosa Plaza and connect via B Street and Seventh Street.

The SMART path also has a gap and missing crosswalks between Santa Rosa Creek and Sixth Street. Pedestrians traveling north-south along the SMART path in this area must detour half a block east to the Wilson Street-Railroad Street corridor. This missing pathway link will be constructed in the future on the west side of the SMART tracks, and at Third Street there is a planned SMART Trail crossing that is the closest Santa Rosa CityBus stop serving the SMART station.

Missing sidewalks increase pedestrian exposure to vehicle traffic, and thereby increase the risk of collisions with vehicles. Bicycle and pedestrian-involved collisions from the Statewide Integrated Traffic Records System (SWITRS) database are presented below in Figure 5-6 and Figure 5-7, respectively. At least one pedestrian death and several other pedestrian and bicycle involved collisions occurred downtown between 2017 and 2017, with clusters at the busiest intersections. These records reinforce the idea that people are walking and biking on streets throughout the city, and especially in the downtown area, even where there are gaps in the pedestrian network (a more detailed collision analysis is presented in the Bicycle and Pedestrian Master Plan Update 2018).
Figure 1-6: Bicycle-Involved Collisions, September 2007 – August 2017

Figure 2-7: Pedestrian-Involved Collisions, September 2007-August 2017

Despite the gaps and barriers scattered throughout the planning area, the local street grid does provide a pedestrian scale network with manageable crossing distances at most intersections, and a high density of activated space at the ground floor level. Together, these make the planning area an appealing place to travel by foot, and to connect to Downtown destinations via other modes of transportation. Primary east-west pedestrian connections include Third Street, Fourth Street, Fifth Street, and Sixth Street. Primary north-south pedestrian connections include the SMART Trail (existing and planned), Wilson Street, Morgan Street, and Santa Rosa Avenue. Opportunities to improve pedestrian connectivity throughout the planning area should focus on enhancing the pedestrian experience on these streets, and supporting comfortable crossings that minimize pedestrian exposure to vehicle traffic.

Planned Pedestrian Improvements

The City’s *Bicycle and Pedestrian Master Plan Update 2018* was adopted in March 2019 and identifies priority projects to improve the citywide pedestrian network. The Master Plan Update provides a priority list of recommended facility improvements, including sidewalk extensions and pathways on corridors where they are likely to serve the largest volume of pedestrians or, address an identified priority community concern, or otherwise have a significant impact. Within the downtown area, the plan calls for: sidewalk extensions along Third Street, Wilson Street, Brookwood Avenue, and Pierson Street; a proposed sidewalk on Brookwood Avenue between College Avenue and Fifth Street; gap closures on the SMART Trail between Third Street and the Santa Rosa Creek, and along the Santa Rosa Creek Trail from Santa Rosa Avenue to Brookwood Avenue; and further study of Brookwood Avenue between Second Street and Sonoma Avenue, and College Avenue between Mendocino Avenue and Glenn Street. Preferred crossing enhancement locations were identified at 15 downtown intersection locations, and a trail bridge is called for at the east end of the Santa Rosa Creek Trail.5

Bicycle Network

Santa Rosa has significant assets to support walking and bicycling as transportation – gentle topography, temperate conditions year-round, significant off-street infrastructure connected to beautiful open spaces, a strong culture of biking and walking for recreational trips, and a vibrant downtown that would be a short and easy walk or bike ride away from many Santa Rosa residents with the right infrastructure.

The existing and planned bicycle routes and mixed-use trails are illustrated in Figure 5-8.

According to the adopted *Draft Bicycle and Pedestrian Master Plan Update (2018)*, bicycling and walking mode shares have remained steady in Santa Rosa over the last five years, with bicycle commute trips hovering between 1 percent and 1.3 percent between 2012 and 2016. Bicycle volume counts conducted in 2018 on the SMART Trail at Ninth Street and Sebastopol Avenue report an average of 53 daily bicyclists on this trail, with highest use on weekdays during the peak commute periods (7 a.m. to 10 a.m. and 3 p.m. to 6 p.m.). Six of the top ten bicycle volume intersections in Santa Rosa are in or along the boundary of the downtown planning area: Stony Point Road and the Santa Rosa Creek Trail; Humboldt Street and College Avenue; Sonoma Avenue and Brookwood Avenue; Santa Rosa Avenue and Second Street; and the Joe Rodota Trail at Dutton Ave at the Prince Memorial Greenway and Dutton Avenue.6

5 https://srcity.org/2711/Bicycle-and-Pedestrian-Master-Plan

6 https://srcity.org/2711/Bicycle-and-Pedestrian-Master-Plan
Figure 5.8 Existing and Planned Bicycle Routes and Mixed Use Trails

Source: City of Santa Rosa, 2018; Dyett & Bhatia, 2019
While the street grid and presence of trails could be conducive to a greater share of local trips by bicycle, the existing bicycle facilities do not provide a low-stress network that is inviting and comfortable to a wide range of potential users. A low-stress network minimizes exposure to potential vehicle conflicts, especially where vehicles travel at significantly higher speeds than bicycles, or on streets with high vehicle volumes. In other words, streets with low vehicle volumes traveling at low speeds, or streets with a greater degree of separation between vehicles and bicycle facilities are considered low-stress, and streets with little separation, a significant vehicle-bicycle speed differential, and high vehicle volumes are considered high-stress.

The Bicycle and Pedestrian Master Plan Update identified an index of bicyclist level of traffic stress for all streets citywide based on vehicle speed, vehicle volume, and bicycle facility types. Street segment receive the following scores: 1 for lowest stress/comfortable for all ages and abilities; 2 for low-medium stress/comfortable for an average adult; 3 for medium-high stress/comfortable for confident adults; and 4 for high stress/comfortable only for the fearless bicyclists. Within the downtown planning area, most of the primary east-west and north-south connector streets are identified as medium-high or high stress, and all arterials citywide are considered medium-high or high stress.

In 2016, bike parking investment strategies at each rail station in Sonoma County were developed to support bike improvements leading to Santa Rosa’s rail stations and set the stage for increasing the share of SMART riders who access the stations by bike. Together with a more robust network of low-stress bicycle facilities, these investments could make commuting and other local trips by bicycle more appealing and comfortable for a wide range of Downtown Santa Rosa’s residents, workers and visitors.

Planned Bicycle Improvements

The City’s Bicycle and Pedestrian Master Plan Update (2018 identifies a priority list of recommended facility improvements, including nearly 130 miles of new bicycle facilities designed to respond to the street context with buffers and physical barriers where additional separation from vehicles is called for. The plan proposes new bicycle facilities throughout the downtown street grid, including shared paths, standard bike lanes, buffered bike lanes, designated bike routes sharing vehicle right of way, designated bicycle boulevards, and separated bikeways. These fill gaps in the existing network, and establish new connections to create a robust bicycle network spanning most of the continuous north-south and east-west downtown streets. The plan also calls for additional study on a few key corridors that require additional analysis and outreach, including: Fourth Street Corridor, from D Street in Downtown to Farmers Lane; parts of Collage Avenue; Brookwood Avenue; and connections to areas north of Downtown via the SMART Trail.

7 https://srcity.org/2711/Bicycle-and-Pedestrian-Master-Plan
8 https://srcity.org/2711/Bicycle-and-Pedestrian-Master-Plan
5.5 Parking

Existing Parking

As Santa Rosa has grown, so too have parking-related issues. While a 2015 analysis showed that the city has enough parking spots available in and near its downtown core to satisfy demand, the choicest spots on the main streets are often at capacity, leading to spillover parking in nearby residential neighborhoods alongside added congestion caused by double parking and drivers circling the block looking for an open curbside space. A 2016 survey of area residents and visitors found that 50 percent of them would be more likely to visit downtown if parking there was more convenient.

At this time, parking supply in Railroad Square meets the current demand. However, an influx of commuters and additional development around the Downtown Santa Rosa-Railroad Square SMART station may compound these issues. If SMART ridership meets or exceeds the 2025 ridership forecasts and expected development of new retail and housing in Railroad Square continues, parking demand could increase and strain the existing on-street parking supply in the immediate area.

After a detailed analysis of parking supply and demand in the Courthouse Square and Railroad Square neighborhoods was completed in 2016, the City instituted new parking management practices to ensure that both off-street and on-street parking are more effectively utilized throughout downtown. Under the recommended demand-responsive model, the price of parking fees is based on demand, and new rates were introduced in January 2018 to support this approach. Areas of high demand are 50 percent more expensive than those a few blocks away, with the aim of achieving 85 percent parking occupancy at peak periods. People can now pay for parking using the Passport Parking mobile app.

A fully demand-responsive parking management system would also eliminate or significantly lessen parking time limits, relying on pricing to incentivize parking turnover, rather than time limits. This approach may require more significant price differences at high- and low-demand locations during peak periods to ensure that at least a few spots are always available at prime locations for visitors and customers, while employees and all-day commuters utilize lower cost all-day parking rates at nearby off-street lots and garages.

In addition to managing on-street and high demand parking, there are opportunities to better utilize the existing off-street parking supply in the planning area, which includes a very large volume of garage parking spaces at the Santa Rosa Plaza Mall, which are under private ownership.

Planned Parking Updates

After implementing the parking policy and pricing updates in January 2018, additional parking management opportunities and policy changes are being considered. To serve the Railroad Square SMART Station, a strategic curb management approach will continue to evolve as necessary in response to new transit station pickup and drop-off activity and paratransit bus service needs, and existing visitor center and retail customer parking. The City Council is also discussing the possibility of reducing parking requirements for downtown development, where multimodal access and strategic transportation demand management policies would support a reduced vehicle mode share and lower demand for dedicated parking facilities in new developments.

9 https://www.srcity.org/2591/Downtown-Parking
5.6 Key Findings and Planning Considerations

Street Network

- The reunification of Courthouse Square has resulted in a shift in traffic volumes away from Mendocino Avenue (between Tenth and Fourth Streets) and Santa Rosa Avenue (south of First Street), which have seen a 20 percent and 35 percent decrease respectively. Decreased volumes represent opportunities for road diets to remove one vehicle travel lane and reallocate the street width to provide on street bike lane(s), wider sidewalks, landscaped medians, and/or reconfigured parking.

- The 2007 Plan and subsequent efforts by the City identified the possibility for new streets at the following locations that should be explored further through the planning process: new street connecting Third and Sixth Streets through the SMART site; Donahue Street extension to Maxwell Court; re-connection of Fourth Street through the Santa Rosa Plaza Mall; Roberts Avenue extension under SR 12; new local street through vacant parcel adjacent to Imwalle Gardens.

Transit

- The Santa Rosa Transit Mall is the busiest Transit Hub in the North Bay. With over 3000 trips departing the Transit Mall each week (751,500 trips per year) provided by 5 different agencies providing local, county wide and Bay Area service. The Downtown SMART Station is linked to the Transit Mall via 10 buses an hour traveling from downtown to the SMART Station.

- The City of Santa Rosa completed a comprehensive planning process and re-design of its CityBus system, called Reimagining CityBus. The result of Reimagining CityBus was a Phase I implementation in May 2017 that features: 15-minute service in high-ridership corridor, more direct routes, more 2-way service to help reduce transit travel time and a bus system more convenient and useful for riders. The redesigned bus system is organized into two phases - Phase One and Phase Two which includes features such as improved rapid bus using transit signal priority corridors, improved late night and weekend service. This plan is essentially a roadmap for creating a modern transit system to meet the current and future needs of Santa Rosans through 2025.

Bicycle and Pedestrian Network

- The relatively flat terrain of the planning area and the existing street grid create an inviting pedestrian environment; however, the freeways represent significant physical barriers to pedestrian connectivity and missing and unmarked crosswalks (principally at Sixth/A Street and Seventh/Third Street) present navigational challenges and safety concerns to address. 24-hour connectivity through the mall is also an impediment to connectivity.

- The existing street grid and the presence of trails through the planning area are assets that can incentivize bicycle trips; however, key connections through the planning area do not currently offer “low stress” routes for cyclists due to lack of buffering and separation from vehicles traveling at higher speeds.

Parking

- Today, finding an on-street parking space on the most visited blocks of downtown Santa Rosa is a challenge at peak periods. The demand is highest on streets immediately adjacent to Courthouse Square and Railroad Square during peak periods on weekdays and on the weekend. However, the City operates five garages and nine surface parking lots in the downtown area, providing nearly 3,300 off-street parking spots. While occupancy is high in some lots, many spaces in parking garages remain available even during peak demand periods.
• If SMART ridership meets or exceeds the 2025 ridership forecasts and expected development of new retail and housing in Railroad Square continues, parking demand could strain the existing on- and off-street public parking supply in the immediate Railroad Square area. However, there are opportunities to better utilize the existing private off-street parking supply in the planning area, which includes a very large volume of garage parking spaces at the Santa Rosa Plaza Mall.

• The convenience and cost of parking affects the competitiveness of downtown Santa Rosa in comparison to other Sonoma County downtowns. To successfully attract residents and visitors, Santa Rosa will need to offer high-quality attractions and convenient parking options that make it worth the trip.
6. INFRASTRUCTURE AND UTILITIES
This chapter describes the current conditions of the infrastructure network that serves the planning area, including the water supply and distribution system; the sanitary sewer system; and the storm drainage system.

6.1 Water Supply and Distribution System

The planning area is in the main aqueduct zone for the City of Santa Rosa, which has a total capacity of 24.6 million gallons (MG) with a surplus of 1.4 MG. The City mains are supplied from the 36” Sonoma County Water Agency (SCWA) Aqueduct at various locations. The Aqueduct system runs generally both north-south and east-west through the City, including within the planning area.

Within the planning area, as shown on Figure 6.1, most residential neighborhoods are served from 6” to 10” mains. A majority of the water distribution system in the area is supplied by a network of 12” lines running east-west and connected in the north-south direction. The planning area is all located within one pressure zone.

Fire demand will vary depending on proposed type of construction and overall square footage of buildings, per appendix B of the Fire Code. The existing fire storage within this zone is 1.05 MG which would equate to 4,000 gallons per minute (gpm) for over 4 hours. From a storage perspective, this meets the requirement for any size building per Appendix B of the Fire Code. The elevation of the planning area, along with the interconnected 12” water mains, is favorable to high pressures and flows for fire flows. There are currently no buildings in the planning area needing additional fire flows; however, buildings over 80 feet tall may need to augment flows to upper floors with pumps.

The 2015 Urban Water Master Plan and 2014 Final Water Master Plan Update both call for increased Recycled water use city wide for irrigation use in order to reduce the amount of potable water needed. While there are currently no active recycled water lines in the planning area, there is an 18” urban re-use water main along the north side of Santa Rosa Creek from Santa Rosa Avenue to Pierson Street. Ultimately this would connect to the functioning system fed from the recycled water pond near the Utilities Field Operation building on Stony Point Road. The easterly limits of the functioning system is currently in Stony Point Road. There are currently no Capital Improvement Projects scheduled to complete this connection before 2025.

1 2014 City of Santa Rosa Water Master Plan Update, Table 5-4.
Figure 6.1 Water Supply and Distribution Network

Water Main
Pipe Diameter
- 6" and less
- 8"
- 10"
- 12"-16"
- 18" Urban Re-use Main
- 24" SCWA Aqueduct
- 36" SCWA Aqueduct

Source: BKF, 2019; City of Santa Rosa, 2019; Dyett & Bhatia, 2019
6.2 Sanitary Sewer System

There are five Sewer Trunk Areas and three Trunk Sewer Lines (see Figure 6.2) and a network of gravity mains ranging in material type, age, and size (from 6” to 12”) within the planning area. A description of these facilities is provided below. Sewer laterals are used to connect customers to these lines. Laterals are typically not allowed to connect to trunk mains, so in certain locations, there are trunk lines and sewer mains within the same street.

The Sanitary Sewer Master Plan Update (October 2014) currently shows no trunks exceeding capacity within the planning area. The Asset Management section of Santa Rosa Water is evaluating the need to replace portions of the Crosstown Trunk line, which may occur in the next five to ten years. No other Capital projects are currently scheduled within the planning area.

Old Town Sewer Trunk Area – This area has a tributary area within the planning area, south of the Downtown Trunk Area and north of Santa Rosa Creek. All sewer in this area is collected by mains and then connected to the trunk (outside of the planning area).

Crosstown Sewer Trunk Area & Main – This area collects waste between Santa Rosa Creek and the southern boundary of the planning area. The trunk main is located mostly in Sonoma Avenue on the east side of Highway 101 and West Third Street on the west side of Highway 101 and connect to the Llano Trunk line west of Stony Point Road (outside the planning area). The trunk pipe is constructed mostly from reinforced concrete pipe and the size varies from 33” to 36” east to west.

Benton Sewer Trunk Area & Main – This area collects waste in the area just south of College Avenue along the entire planning area. The trunk main is located in College Avenue between Glenn Street and Link Lane and connects to the Old Town Trunk Line at West College and Link Lane (outside the planning area). The trunk pipe is constructed mostly from plastic pipe and is 18”.

Downtown trunk line & Main – This area collects waste in the area north of the Old Town and Crosstown Trunk areas and south of the Benton Sewer Trunk Area. Moving east to west, it occupies Second Street, E Street, Third Street, B Street, Seventh Street, A Street and Ninth Street. It connects to the Old Town Trunk line at the intersection of Ninth Street and Link Lane (outside the planning area). The trunk pipe is constructed of plastic, fiberglass reinforced thermosetting plastic, asbestos concrete, and vitrified clay pipe ranging in size from 18” to 24” east to west.

Airport Trunk Area – This area has a tributary area within the planning area, south and west of the Crosstown Trunk Area, north of Sebastopol Road and east of Dutton Avenue. All sewer in this area is collected by mains and then connected to the trunk (outside the planning area).

Treatment Plant – The sewer model of the Santa Rosa 2010 population shows 16.9 million gallons per day (MGD). The projected urban growth boundary buildout (population in 2035) projects an additional 2.6 MGD resulting in a total of 19.4 MGD. The total 2035 projected sewer generation from outside community contributors is 4.6 MGD resulting in a total 2035 projected sewer flow of 24 MGD to be treated by the Laguna Treatment Plant. The capacity of the plant is listed at 54 MGD.

2 2014 City of Santa Rosa Sanitary Sewer System Master Plan Update, Table 3-2.
3 2014 City of Santa Rosa Sanitary Sewer System Master Plan Update, Table 3-3.
4 2014 City of Santa Rosa Sanitary Sewer System Master Plan Update, Section 2.3.1.
Therefore, capacity is sufficient to accommodate growth planned in the 2007 Specific Plan through 2035.
Figure 6.2 Sewer System

Sewer Main
Pipe Diameter
- 6” and less
- 8”
- 10” - 12”
- Trunk (14” - 30”)
- Trunk (33” - 48”)
- Trunk (54” - 66”)

Trunk Area
- Airport
- Benton
- Corby
- Crosstown
- Downtown
- Oldtown

SMART Rail

Source: BKF, 2019; City of Santa Rosa, 2019; Dyett & Bhatia, 2019
6.3 Storm Drain System

The main drainage conduit within the planning area is the Santa Rosa Creek. Santa Rosa Creek runs east to west through the planning area, going under City Hall in a 108” Box Culvert from E Street to Santa Rosa Avenue where it enters the Prince Memorial Greenway, a revitalized area of the creek that removed the trapezoidal, concrete lined channel and restored it to a natural condition with vegetation, walkways and reinforced earthen banks. Matanzas Creek connects to Santa Rosa Creek under City Hall. Long term planning currently calls for relocation of the City offices, removal of the 108” box culvert and subsequent restoration of the confluence of these creeks to a natural condition, including vegetation, bank stabilization, bike paths and community areas.

Currently, most of the stormwater that falls in the planning area is collected in street gutters and collected in underground conduits and discharged to Santa Rosa Creek. These conduits are primarily 18” or smaller and eventually outfall to Santa Rosa Creek, or tie into one of the larger storm drains that eventually outfall to Santa Rosa Creek. Table 6.1 shows a list of storm drain outfalls to Santa Rosa Creek. The outfalls and their tributary areas are shown on Figure 6.3.

Flooding in the downtown area is mitigated by upstream diversions and detention basins (Spring Lake Park) that throttle the amount of flow allowed downtown from the upper reaches of the creek. The planning area is located in Reach 4 of the Santa Rosa Creek as identified in the 2013 Citywide Creek Master Plan.

A majority of the planning area is already developed, resulting in a high runoff factor. However, current regulations require that new development and redevelopment provide on-site treatment and hydromodification features as well as enhancements to areas surrounding existing waterways and habitat restoration. As such, as development/redevelopment occurs within the planning area, projects will be required to implement on-site stormwater treatments and hydromodifications which should result in a lower runoff factor for the area, thereby reducing peak runoffs.

Flooding often occurs at the intersection of Roberts Avenue and Sebastopol Road, as this area is not currently served by existing storm drain piping that connects to an adequate downstream drainage system. However, no Capital Improvement projects are currently planned for Storm drain in the planning area before 2025.

| Table 6.1: Storm Drain Outfalls to Santa Rosa Creek |
|----------------------------------|------------------|
| **North Side Creek Outfalls** | **South Side Creek Outfalls** |
| North Dutton Outfall (66”) | Santa Rosa Avenue (48”) |
| Pierson outfall/6th Street (48”) | |
| 5th Street outfall (30”) | |
| 4th Street outfall (24”) | |
| B Street Outfall (42” & 66”) | |
| E Street Outfall (24”) | |
6.4 Key Findings and Planning Considerations

- Future development is likely to take place largely on previously developed sites served by existing infrastructure. Several large parcels in the Imwalle Gardens area represent the only opportunity sites not currently served by existing infrastructure. Development on vacant parcels in this area would require connections to existing infrastructure in West Third Street.

- The only major capital improvement project programmed in the planning area through 2025 is the Crosstown Trunk line replacement project. An infrastructure and financing plan will be prepared to assess and document future needs once the City Council has approved the preferred alternative at the end of Phase 2 of the DSASP Update.

- While the elevation of the planning area and the existing network of the interconnected 12” water mains allows for meeting fire flow requirements under current conditions and there are currently no buildings in the planning area needing additional fire flows, new taller buildings may need to augment fire flows to upper floors with pumps.

- The intersection of Sebastopol Road and Roberts Avenue in the southwestern portion of the planning area often floods. As development and redevelopment occurs, regulations will require that projects implement on-site stormwater treatments and hydromodifications, which should result in a lower runoff factor for the area and reduced peak runoffs. The need for improvements to the storm drain system in this area will be assessed in developing the infrastructure and financing plan at the end of Phase 2 of the DSASP Update.
7. ENVIRONMENTAL CONSIDERATIONS
7.1 Geology and Soils

This section provides an updated summary of the Geology and Soils in the Santa Rosa Downtown Station Area Specific Plan. Included in this section is a description of the existing conditions and the opportunities and constraints to development posed by the existing Geology and Soils conditions. Conditions such as weak, erodible, or expansive soils can be mitigated by using suitable grading, engineering, soil modification, drainage controls and other measures while some geological hazards such as seismic shaking, soil liquefaction and others may only be mitigated to an acceptable standard or level of risk.

Geology and soils in the City of Santa Rosa and surrounding Sonoma County are mainly a consequence of the long history of active tectonics near the margin between the Pacific and North American Tectonic Plates, patterns of climate change, and changing land use and vegetation patterns. Typical geologic and soils related constraints on development within the City of Santa Rosa are strong seismic shaking; slope instability that may cause landslides, mudflows, debris flows and other types of slope failure; and basic soil instability, including settlement, shrinking and swelling of soil, and fissuring or cracking of the ground. Secondary seismic effects such as soil liquefaction, seismic induced landsliding, lurch cracking and fissuring and damage to existing structures can also be a constraint to development. These constraints are interrelated and may be exacerbated by periodic heavy rains causing soil erosion, saturation of the ground, flooding and landsliding. Rainfall and runoff can also result in the formation of sinkholes and failure of drainage structures, roads, and utilities resulting in soil erosion, slope or stream bank destabilization and landslides as secondary affects.

Regulatory Setting

City of Santa Rosa Local Hazard Mitigation Plan

On October 30, 2000, the President of the United States signed into law the Disaster Mitigation Act (DMA) of 2000 (Public Law 106-390). A hazard mitigation plan is a formal document that outlays the plans to reduce or eliminate the long-term risk to human life and property from natural or man-made hazards. The City of Santa Rosa Local Hazard Mitigation Plan (LHMP) was prepared in 2016 and adopted by the City. The plan has been designed to identify the areas where people or structures may have higher vulnerability to earthquakes, flood, wildland fires, and other natural hazards. The plan identifies policies and actions that may be implemented by the City to reduce the potential for loss of life and property damage in these areas based on an analysis of the frequency of earthquakes, floods, wildland fires and landslides in terms of frequency, intensity, location, history, and damage effects. The plan has been designed to meet the following goals:

1. Implement the Local Hazard Mitigation Plan to better prepare Santa Rosa for disaster and minimize impacts associated with natural and man-made hazards;
2. Provide for the safety of Santa Rosa community members by maintaining efficient, well-trained, and adequately equipped City personnel;
3. Preserve and enhance the City’s water infrastructure by maintaining and enhancing an operational drainage system, preserving drainage capacity, and protecting water quality;
4. Maintain and enhance a disaster-resistant region by reducing the potential for loss of life, property damage, and environmental degradation from natural disasters, while accelerating the capacity for economic recovery from those disasters;
5. Reduce the vulnerability of public and private buildings to the effects of earthquakes, flooding, wildfire, and landslides.

City of Santa Rosa General Plan (2035), Noise and Safety Element

The intent of the Noise and Safety Element is to identify and evaluate natural and man-made hazards affecting Santa Rosa including noise generation, geology and seismicity, flooding, hazardous materials, and wildland fires. The Noise and Safety Element identifies goals and policies related to Geology and Soils including preparing for disasters including adopting the Local Hazard Mitigation Plan and prohibiting development in high-risk geologic and seismic hazard areas to avoid exposure to seismic and geologic hazards. Policies include requiring studies prior to development approval to identify active earthquake fault trace locations in accordance with the Alquist-Priolo Earthquake Fault Zoning Act, requiring comprehensive geotechnical investigations prior to development approval (where applicable), restrict development from areas where people might be adversely affected by known natural or manmade geologic hazards, and restrict development of critical facilities in areas determined as high-risk geologic hazard zones. Other policies include identification and evaluation of existing structural hazards related to unreinforced masonry, poor or outdated construction techniques, and lack of seismic retrofit. Also, to require appropriate and feasible seismic retrofit of commercial, industrial and public buildings, and inspection for structural integrity of water storage facilities, water pipelines, electric transmission lines, roadways, water detention facilities, levees, and other utilities after a major seismic event. A policy for mandatory minimum erosion control measures for existing properties and those under construction are also recommended.

Alquist-Priolo Earthquake Fault Zoning Act

The Alquist-Priolo Earthquake Fault Zoning Act was passed by the California Legislature in 1972 to mitigate the hazard of surface faulting to structures. The act’s main purpose is to prevent the construction of buildings used for human occupancy on the surface trace of active faults. The act addresses only the hazard of surface fault rupture and is not directed toward other earthquake hazards. Local agencies must regulate most development in fault zones established by the State Geologist. Before a project can be permitted in a designated Alquist-Priolo Earthquake Fault Zone, the city or county with jurisdiction must require a geologic investigation to demonstrate that proposed buildings would not be constructed across active faults.

California Seismic Hazards Mapping Act

The California Seismic Hazards Mapping Act of 1990 (California Public Resources Code Sections 2690-2699.6) addresses seismic hazards other than surface rupture, such as liquefaction and seismically induced landslides. The Seismic Hazards Mapping Act specifies that the lead agency for a project may withhold development permits until geologic or soils investigations are conducted for specific sites and mitigation measures are incorporated into project plans to reduce hazards associated with seismicity and unstable soils. No official Seismic Hazards Map has been completed for the Santa Rosa Quadrangle.

California Building Standards Code

Title 24 of the California Code of Regulations, also known as the California Building Standards Code, sets minimum requirements for building design and construction. The 2016 version of the California Building Standards Code was adopted on January 1, 2017. The California Building Standards Code is a compilation of three types of building standards from three different origins:

- Building standards that have been adopted by state agencies without change from building standards contained in national model codes;
Environmental Considerations

Building standards that have been adopted and adapted from the national model code standards to meet California conditions; and

Building standards, authorized by the California legislature, that constitute extensive additions not covered by the model codes that have been adopted to address particular California concerns.

In the context of earthquake hazards, the California Building Standards Code’s design standards have a primary objective of assuring public safety and a secondary goal of minimizing property damage and maintaining function during and following seismic event. The 2016 version of the California Building Standards Code continues major revisions incorporated into the 2013 code. The 2016 code assigns a seismic design category (SDC) to each structure. The SDC is assigned as a means of capturing both the seismic hazard, in terms of mapped acceleration parameters (spectral values), site class (defining the soil profile), and the occupancy category (based on its importance or hazardous material contents). The SDC affects design and detailing requirements as well as the structural system that may be used and total height of structures.

State Minerals Classification System

As required by the California Surface Mining and Reclamation Act, which was enacted in 1975 by the State Legislature (Pub. Resources Code, section 2710 et seq.), the California Department of Conservation, Division of Mines and Geology (CDMG) has established a classification system to denote both the location and significance of key extractive resources.

Environmental Setting

Regional Seismicity

The Specific Plan area lies in the tectonically active Coast Ranges Geomorphic Province of Northern California, on the plain of Santa Rosa Creek. Northwest to southeast oriented ridges and valleys are common in the area and are generally parallel to sub-parallel to the structural trend controlled by faults of the San Andreas Fault System. The San Andreas Fault System represents the boundary between the North American and Pacific Tectonic Plates. Active deformation is expressed along this boundary margin by active seismicity which includes earthquakes and fault displacement on the active faults of the region.

Within Sonoma County, faults are characterized by both strike-slip or horizontal displacement, and dip-slip or vertical displacement. Most active faults strike northwest to southeast, and may include many fault strands in a broad zone, or a single actively creeping identifiable fault. Horizontal and vertical movement is distributed on the various fault traces within a fault zone. Over long periods of time the fault traces accommodating movement and active deformation within a fault zone may change, with some traces becoming inactive while other traces are developing. However, over the short period of human history the activity of certain fault traces may be constrained by ascertaining the date of historic and prehistoric ruptures to predict the probability of future earthquakes.

Major active faults that are located within 50 miles of the Specific Plan area include the Healdsburg-Rodgers Creek, San Andreas, Maacama, and Hayward Faults. Each of these faults is capable of producing a large earthquake that would result in strong seismic shaking of the site. An earthquake on the Healdsburg-Rodgers Creek fault could result in violent to very violent ground shaking. The nearest active earthquake fault zone to the Specific Plan area is the Healdsburg-Rodgers Creek fault, which passes approximately 1.4 miles east of the Santa Rosa Downtown Sonoma-Marin Area Rail Transit (SMART) station site and 3,500 feet...
east of the eastern edge of the Specific Plan area. As shown in Figure 7.1, this fault is zoned under the Alquist-Priolo Earthquake Fault Zoning Act of 1972 as an active earthquake fault zone. Active earthquake fault zones are those faults which are considered by the California Geological Survey to have had fault movement within the last 11,000 years (Holocene time). Other nearby Alquist-Priolo active earthquake fault zones include the Maacama fault (10 miles north), San Andreas fault (17 miles southwest), West Napa fault (24 miles southeast), Green Valley fault (28 miles east) and Hayward fault (32 miles southeast).

Major seismic events in the region that have resulted in moderate to strong ground shaking of the site include the 1868 Hayward earthquake of estimated magnitude 7.0, the great 1906 San Francisco earthquake of approximate magnitude 7.9, and the 1989 Loma Prieta Earthquake of magnitude 6.9. On October 2, 1969, two earthquakes of Richter magnitude 5.6 and 5.7 struck in the vicinity of Santa Rosa along the Healdsburg fault segment of the Rodgers Creek-Healdsburg fault zone. One fatality occurred due to the earthquake as well as 8.35 million dollars in damages. An earthquake of magnitude 5.2 on the nearby West Napa fault on September 3, 2000, near the town of Yountville, reportedly caused between 15 and 70 million dollars in losses, mostly in Napa, while little or no damage was reported in Santa Rosa. Another seismic event to affect the area was the South Napa earthquake of August 24, 2014, resulting in one fatality and over 200 injuries. Property damage from this earthquake is estimated at 350 million dollars to over one billion dollars. This magnitude 6.0 earthquake occurred along the southern portion of the West Napa fault and exposed fault segments which had not been previously recognized.

The United States Geological Survey Working Group on California Earthquake Probabilities study completed in 2014 estimates there is a 72-percent probability between 2014 and 2044 that a M6.7 or greater magnitude earthquake will occur in the San Francisco Bay region. The combined Hayward-Rodgers Creek fault is considered to have an elevated probability of an earthquake during the study period of 2014 to 2044.

Geology
The Geologic Map of the Santa Rosa 7.5' quadrangle, Sonoma County, California, (USGS OF 2008-1009, 2008, Map 1 of 3) shows the Downtown Station site and Specific Plan area is underlain by alluvial fan and fluvial terrace deposits of Holocene age (deposited in the last 11,000 years) on the alluvial plain of Santa Rosa Creek (Figure 7.2). The Geologic Map describes the materials as “gravel, sand and silt, derived primarily from Pleistocene and older sedimentary and igneous units, including older Tertiary to Pleistocene non-marine gravel, late Tertiary volcanic rocks, Mesozoic bedrock of the Franciscan Complex, Coast Range ophiolite and Great Valley sequence.” The Quaternary Geology Map of the area (USGS Open file report 2006-1037, 2006) confirms this description and indicates the area is underlain by Holocene alluvial fan deposits (Figure 7.3).

Most sediment has been eroded and washed from neighboring Pliocene Age rocks of the Sonoma Volcanic formation that is thought to underlie alluvium at depth. These volcanic deposits of basalt, andesite, rhyolite, and volcanic tuff that are common in the Sonoma Mountains east of the site are thought to have intruded through the older Cretaceous to Jurassic age rocks of the Franciscan Complex between 5 and 2 million years ago. The older Franciscan Complex rocks of estimated age between 65 million and 180 million years are commonly found west of the Santa Rosa Plain in the coastal mountains and along the ridgeline of the Sonoma Mountains. Intermediate Pliocene age sedimentary deposits of both the non-marine Petaluma Formation and marine Wilson Grove Formation show that the area was subject to rising and falling sea level that continued throughout the late Cenozoic era and into the Pleistocene.

The Franciscan complex is composed of weakly to strongly metamorphosed greywacke (sandstone), siltstone, shale, argillite, limestone, basalt, serpentinite, chert, and other rocks. This rock was accreted onto the edge of the North American continent during the long period of active subduction of the Pacific Plate beneath the North American Plate. The formation is derived from Jurassic oceanic crust
Figure 7.1 Fault Map

Legend

Fault Classification (State)

Activity

- Historic
- Holocene
- Late Quaternary
- Quaternary

Downtown Station Area SP

SMART Rail

Source: California Geological Survey (2010), Maps of the Aliquist Priolo Fault Zones; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Figure 7.2 Geologic Map

Legend

- Alluvial fan and fluvial terrace deposits, undivided (Holocene) - Gravel, sand and silt, derived primarily from Pleistocene and older sedimentary and igneous units
- Channels (Holocene) - Inside older deposits

Source: USGS, Open-File Report 2008-1009, Maps of Geologic and Geophysical Framework of the Santa Rosa 7.5' Quadrangle, Sonoma County, California; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Figure 7.3 Quaternary Geology Map

Legend

Holocene alluvial fan deposits. Sediment deposited by streams emanating from mountain canyons onto alluvial valley floors or alluvial plans as debris flows, hyperconcentrated mudflows, or braided stream flows. Alluvial fan sediment includes sand, gravel, silt, and clay, and is moderately to poorly sorted, and moderately to poorly bedded. Sediment clast size and general particle size typically decreases downslope from the fan apex.

Source: USGS, Open-File Report 2006-1037, Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, CA; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
and pelagic deposits that are overlain by Late Jurassic to Late Cretaceous sedimentary deposits.

Since the late Cenozoic era subduction has been replaced by transform faulting along faults of the San Andreas Fault System including the nearby Healdsburg-Rodgers Creek fault. There has also been major climate change and dramatic rising and lowering of sea level. Due to the complex geologic history of the area there is a wide variety of volcanic rocks and sedimentary rocks of varying metamorphic grade to be found in the region. These units are often juxtaposed along ancient fault contacts and the structure is complicated by not only ancient deformation, but by active fault deformation. Imprinted on this geology is the drainage pattern of the Santa Rosa Creek Watershed.

Site Soils

According to the USDA Soil Conservation Service, Soil Survey of Sonoma County (1972) and USDA online Soil Survey of Sonoma County (2019), the Specific Plan area north of Santa Rosa Creek is underlain by Yolo Silt Loam and Zamora Silty Clay Loam, while the area southeast of the creek is underlain by Zamora Silty Clay Loam and southwest of the creek is underlain by Yolo Loam and Yolo Clay Loam (Figure 7.4). Deposits within the creek channel were mapped as Riverwash.

Yolo soils are well drained loams underlain by recent alluvium derived from sandstone and shale. Zamora soils are described as well-drained clay loams underlain by alluvium from mixed sedimentary sources. Prior to urbanization these soils would have been considered good for orchards, vineyards, row crops and truck crops. A significant difference is that soils of the Zamora series have high shrink swell potential, compared to low to moderate shrink-swell potential for soils of the Yolo series. With higher clay content soils of the Zamora Series may not drain as well and could promote ponding and more runoff. Riverwash is composed of recent deposits of gravel, sand and silt within the active stream channel areas.

Mineral Deposits

A Mineral Land Classification Map for Aggregate Resources in the Santa Rosa Quadrangle is presented as part of California Geological Survey (formerly CDMG) Special Report 146, Part III, Mineral Land Classification, Aggregate Materials in the San Francisco-Monterey Bay Area (CDMG, 1987). The map does not identify any areas of important aggregate deposits in the Specific Plan area except portions of the Creek channels are identified as “areas containing mineral deposits the significance of which cannot be evaluated from available data” (CDMG Special Report 146, Plate 3.30).

Constraints

Slope Stability

Slope steepness is generally the dominant factor governing slope stability, along with drainage, and soil and bedrock conditions. Steep slopes that exceed 50 percent are especially prone to landslides in areas of weak soil and/or bedrock. Debris flows and shallow slope failures are known to occur on very steep slopes with shallow soils. Since the planning area is nearly flat, slope failure is not expected to occur. An exception to this is along the banks of Santa Rosa Creek where steeper slopes can occur and erosion during heavy runoff can cause erosion of stream banks resulting in the increase in instability of the creek banks.

The slopes in the planning area generally rise to the east at an overall slope gradient of approximately 0.5 percent. Geologic, Quaternary geologic and slope stability maps of the area do not show any landslides within the planning area. However, the Quaternary Geology and slope stability maps of the area do not provide sufficient detail to show small slope failures along the banks of Santa Rosa Creek. The occurrence of these bank instabilities has been reduced due to stabilization measures and bank restoration projects that have been completed along the creek. Bank stability in the vicinity of the Downtown Station and railroad
Figure 7.4 USDA Soil Map

Legend
- Riverwash
- Yolo Loam, overwash, 0 to 5 percent slopes
- Yolo Silt Loam, 0 to 5 percent slopes
- Yolo Clay Loam, 0 to 5 percent slopes
- Zamora Silty Clay Loam, 0 to 2 percent slopes

SMART Rail
Undercrossing

Source: Data Collected from USDA Soil Web Survey In Sonoma County, CA; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
crossing area has been stabilized in previous projects along the creek banks such as trail improvement projects.

Expansive Soils and Settlement of Soils

Soils with moderate to high expansion potential are susceptible to shrinking and swelling due to fluctuations in moisture content, and are a common cause of foundation deterioration, cracking of concrete slabs, retaining wall damage, concrete sidewalk cracking and movement, asphalt pavement damage and other damage to site improvements. Expansive soils also typically behave like a plastic when moistened, which means that they will deform constantly under a constant stress resulting in long term settlement of fills and overlying improvements. The range of moisture content for which a soil material behaves as a plastic is called the plasticity index (PI), which is the difference in moisture content between the plastic limit and liquid limit. The higher the PI, the more plastic, and more expansive and compressive, the soil material can be. An important component of any geotechnical investigation is to determine the plasticity index of soils to determine if the soils are expansive or compressible. Soils that are moderately to highly plastic or have high shrink swell potential may require mitigation in order to reduce the potential for damage to man-made structures.

The Soil Survey of Sonoma County (1972) estimated both shrink swell potential and plasticity index for soils within the plan area. This and other key properties that were evaluated are summarized on Table 7.1. While soils were not specifically evaluated for foundations, since the intent of the survey was primarily agricultural, this information may be used as a general indicator of suitability.

The primary difference between the soils is that those mapped south of the creek are predicted to be slightly more plastic and have a higher shrink swell potential. A site-specific geotechnical evaluation should establish the actual severity of these hazards based on sampling and laboratory testing.

Settlement caused by subsidence is generally related to ground water extraction from agricultural and municipal wells. The Santa Rosa Valley Plain is known to be undergoing subsidence due to groundwater extraction. Settlement of soils is a primary consideration for the stability of any foundation or structure. Settlement may be due to removal of groundwater trapped in pore spaces within soils. This type of settlement generally occurs in sand and silty sand soils. The reduction in pore pressure would cause the load to compress the pore space causing settlement. Settlement may also occur due to compressibility of dry soils. Fine-grained soils such as silts and clays may also settle. Settlement of fine-grained soils is generally related to density and moisture content of the soils. Low density, high moisture content soils commonly settle during loading. Deep, fine-grained soils are present within the planning area and may be subject to compression and settlement during loading with fill soils or structural foundations.

In general, soils conditions are suitable for development and may be engineered in accordance with the California Building Code and other geotechnical requirements to provide sufficient foundation for structures. Requirements include removal of any non-suitable soils consisting of native subgrade or fill soils, and replacement with

Table 7.1: Soils Survey Characteristics

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Area</th>
<th>Shrink Swell Potential</th>
<th>PI</th>
<th>Strength</th>
<th>Compressibility</th>
<th>Runoff Rates</th>
<th>Erosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yolo Silty Loam</td>
<td>North of Creek</td>
<td>Low to Moderate</td>
<td>5-15</td>
<td>Faire to Poor</td>
<td>Medium</td>
<td>Slow</td>
<td>Slight</td>
</tr>
<tr>
<td>Zamora Silty Clay Loam</td>
<td>South of Creek</td>
<td>Moderate</td>
<td>5-20</td>
<td>Fair to Poor</td>
<td>Medium</td>
<td>Slow</td>
<td>Slight</td>
</tr>
</tbody>
</table>

Source: Sonoma County Soils Survey, 1972, USDA Soils Conservation Service
compacted and moisture conditioned engineered fill in accordance with accepted geotechnical standards. Testing will be required to verify that specified foundation conditions are met.

Primary Seismic Hazards- Surface Fault Rupture

A number of active and potentially active faults are present in the region. According to criteria of the State of California Geological Survey, active faults have experienced surface rupture within the last 11,000 years, in the Holocene Epoch. The Alquist-Priolo Earthquake Fault Zoning Act of 1972 initiated a program of mapping active and potentially active faults (fauxts with displacement within Quaternary time- the last 1.6 million years). According to the program, active faults must be zoned and development projects within the Earthquake Fault Zones investigated to establish the location and age of any faulting across the development site. Active and potentially active faults in Sonoma County have undergone extensive investigation in the past. The California Geological Survey (formerly the California Division of Mines and Geology) has established Alquist-Priolo Earthquake Fault Zone (EFZ) boundaries and has published maps showing the areas that require investigation, including the Santa Rosa Quadrangle (State of California, 1983, Earthquake Fault Zones Map of the Santa Rosa Quadrangle, Revised Official Map). According to the Earthquake Fault Zones Map of the Santa Rosa Quadrangle, the Specific Plan Area is not located within an active Earthquake Fault Zone. The nearest EFZ to the Plan Area is for the Rodgers Creek Fault which is located approximately 3,500 feet east of the eastern edge of the Specific Plan area.

Secondary Seismic Hazards

Ground Shaking

The San Francisco Bay Area is a seismically active region and experts consider it likely that the planning area will be subjected to at least strong seismically induced ground shaking in the near future. According to the Working Group on California Earthquake Probabilities (WGCEP) assessing the probability of earthquakes in the San Francisco Bay region, there is a 72-percent probability that a major earthquake of Richter Magnitude 6.7 or greater will strike the region during the next 30 years (USGS, 2015, USGS Fact Sheet 2015-3009).

The intensity of ground shaking will vary with the distance and magnitude of the earthquake causing the ground shaking. A major earthquake, such as Magnitude 6.7 or greater along the nearby Rodgers Creek Fault is predicted to generate violent to very violent ground shaking equivalent to a Modified Mercalli Intensity (MMI) level of IX or X (Santa Rosa General Plan 2035, Figure 12-3, Geologic and Seismic Hazards). An earthquake of MMI IX could result in considerable damage to specially designed structures, well designed frame structures could be thrown out-of-plumb, great damage could occur in substantial buildings with some partial collapse, and older structures could be thrown off of their foundations. An earthquake of MMI X could result in heavy damage to some well-built wooden structures and bridges requiring replacement and could result in rails being bent. A major earthquake on the other nearby regional faults such San Andreas fault, Maacama fault, and Hayward fault, could result in at least strong ground shaking equivalent to MMI of VII. In these more distant seismic events, damage is expected to be negligible in buildings of good design and construction, slight to moderate in well-built ordinary structures, but could be considerable in older poorly built or badly designed structures. Additionally, some house chimneys could be damaged. Structures built to meet modern building codes are expected to fare much better than older structures that have not included any seismic upgrades.

Peak ground accelerations for the Downtown Station site with a 10-percent probability of being exceeded in a 50-year period is estimated to be 0.832 (83.2%) of the acceleration due to gravity (g) at the station (USGS Seismic Design Maps, ASCE 7-10 reference document, 2019). Actual ground motions resulting from ground acceleration may be amplified or dampened depending on the underlying geologic materials, the specific location of the seismic event, and the site location.
Seismically Induced Liquefaction

Liquefaction is the temporary transformation of saturated, cohesionless soil into a viscous liquid as a result of ground shaking. According to the Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region (USGS, 2006, Open-file report 2006-1037) map of liquefaction susceptibility, soils within the Specific Plan area are considered to have moderate susceptibility to liquefaction (Figure 7.5). This assessment is likely due to the occurrence of deep alluvial soils in close proximity to active faults and the active seismic nature of the San Francisco Bay and northern California region.

The Specific Plan area is not shown to be an area with a high liquefaction risk such as the area along the Russian River. While the planning area is shown to have moderate susceptibility it does not have shallow groundwater and well sorted or poorly graded sandy soils like those found along the Russian River that are considered most susceptible, nor does it have deep unconsolidated fill deposits such as those that failed in the Marina District of San Francisco during the 1989 Loma Prieta earthquake of estimated magnitude 6.9. Sandy soils could be present in deposits associated with Santa Rosa Creek. While the location of Santa Rosa Creek is constant in the planning area now due to urbanization, culverts, and other fixed structures, the creek historically meandered across the plain. Therefore, sandy deposits that could be liquefiable could be present underlying the planning area.

In order to assess the liquefaction potential in more detail requires site-specific analysis of soils that would be completed for a geotechnical investigation or geologic assessment as part of site development or redevelopment. While this may have been done for newer structures or renovations within the planning area, it has not been comparatively assessed for all sites. However, general soils characteristics used to determine liquefaction potential may be determined from the soil survey. Most of the soils present in the planning area are clay soils. The exception to this are the sediments that occur in the Santa Rosa Creek channel which are mapped as Riverwash on the soil map.

Seismically Induced Densification

Dynamic densification or ground subsidence can occur when dry cohesionless sand soils collapse as a result of seismic shaking. This may be particularly true of unconsolidated sandy fill, or ground overlying hollow areas due to caves, mines, or areas with excessive groundwater removal. Since soils described within the planning area are considered to have significant quantity of fines and at least low to moderate plasticity soils, they may have enough cohesion to produce only a slight risk of seismically induced densification. However, a site-specific geotechnical investigation should establish the severity of this hazard.

Seismically Induced Lurch Cracking

Lurching is the sudden swaying, rolling, or spreading of the ground during a strong earthquake. Lurch cracking is the development of fissures or cracks on slopes overlain by weak soils. This hazard is considered minimal due to lack of slopes, except at the top of bank next to Santa Rosa Creek.

Seismically Induced Slope Failure

Seismically induced slope failure is another secondary seismic hazard. During earthquake-induced ground shaking, unstable slopes can fail, causing landslides and debris flows. The overall hazard from seismically induced slope failure will be limited by lack of steep slopes in the Specific Plan area, except at the top of bank next to Santa Rosa Creek.
Figure 7.5 Liquefaction Potential

Legend

Liquefaction Potential

- Very Low
- Low
- Medium
- High

SMART Rail

Source: USGS, Open-File Report 2006-1037, Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, CA; City of Santa Rosa, 2018; Dyett & Bhatia, 2019.
7.2 Hazardous Materials

This section evaluates the potential adverse impacts on human health and the environment due to exposure to hazards and hazardous materials that could be encountered as a result of implementation of the project. The evaluation is based on review of existing environmental documentation available for the project site and adjacent properties, site reconnaissance and conversations. The analysis also considers current laws and regulations on transportation, storage, and use of hazardous materials used during demolition, construction, and the proposed development. Hazardous materials are defined differently between the federal, state, and local levels. For instance, California law defines hazardous material as “any material that, because of its quantity, concentration, or physical or chemical characteristics, poses a significant present or potential hazard to human health and safety or to the environment if released into the workplace or the environment.” A full description of how each level of government defines hazardous materials can be found at the end of the chapter.

Regulatory Setting

This section outlines the agencies that regulate hazardous materials in the area and their jurisdiction. The section also briefly discusses how these agencies work together to enforce regulations and respond to disasters.

Federal

U.S. Environmental Protection Agency (EPA), Region IX for the Pacific Southwest is the chief environmental regulator at the federal level. The EPA maintains and enforces national environmental standards and regulations. Hazardous materials programs and regulations run by the EPA Region IX include the following:

- Superfund Division focuses on Site Cleanup, Federal Facilities and Base Closures, Emergency Response and Planning, Community involvement, site assessment, oil pollution, Brownfields, and partnerships, land, and revitalization cleanup. This division oversees contaminated sites designated by the EPA on the Superfund cleanup list.

- Enforcement Division focuses on compliance inspection, case development, state oversight, compliance data management and analysis.

- Water Division – This division focuses on environmental issues and related functions pertaining to the Clean Water Act, the Safe Drinking Water Act, and the Marine Protection, Research & Sanctuaries Act. Among the programs instituted under the Clean Water Act are the National Pollutant Discharge Elimination System (NPDES) which mandates programs for stormwater control and the requirements for Storm Water Pollution Prevention Plans (SWPPP), which mandates that all projects over one acres in size devise a plan to show how erosion and contaminated runoff will be prevented from leaving the construction area.

- Toxic Release Inventory (TRI) program is a resource for learning about toxic chemical releases and pollution prevention activities reported by industrial and federal facilities.

- Spill Prevention, Control, and Countermeasure (SPCC) rule regulates the handling and transportation of oil products and the Facility Response Plan (FRP) rules mandates preparation and implementation of plans for the control and cleanup of spills that may occur.
• Underground Storage Tanks (USTs) are regulated by the EPA in partnership with States and Tribal Authorities including regulations for removal, inspections, and cleanups.

Occupational Health and Safety Administration (OSHA) regulates workplace risk and exposure to hazardous materials.

Federal Department of Transportation (DOT) Regulates transportation of hazardous materials especially over highways, railroad systems, and air transportation.

State

Cal EPA - Similar to the U.S. EPA, Cal EPA issues and enforces its own environmental regulations and houses numerous divisions and programs. Such divisions include the California Air Resources Board, the California Department of Toxic Substances Control and the State Water Resources Control Board (see below). Cal EPA also oversees the Certified Unified Program Agencies (CUPA), which are local agencies certified by Cal EPA to implement and enforce Hazardous Materials regulations issued by Cal EPA.

California Department of Toxic Substances Control (DTSC) is chiefly responsible for regulation, handling, use, and disposal of toxic materials in California. DTSC also cleans up hazardous sites in California.

California Air Resources Board (CARB) - Regulates air emissions standards and models air quality.

State Water Resources Control Board (SWRCB) regulates discharge of potentially hazardous materials to waterways and aquifers. This includes the Regional Water Quality Control Boards that regulate water quality. The **North Coast Regional Water Quality Control Board** (RWQCB) is the oversight agency responsible for Santa Rosa and has jurisdiction over water quality issues, including groundwater contamination.

California Department of Occupational Safety and Health (CAL/OSHA), California regulates exposure to hazardous materials in the workplace.

California Department of Health Services (DHS) Regulates healthcare related to hazardous material cleanup and hazardous waste disposal.

California Department of Transportation (Caltrans) Regulates transportation of hazardous materials on the highway. Caltrans is mandated to enforce Federal DOT regulations in addition to its own standards.

Regional and Local

Bay Area Air Quality Management District (BAAQMD) Regulates the stationary sources of air pollution such as residential wood burning and agricultural and industry emissions. BAAQMD regulates renovation and demolition activities that may result in pollutants such as asbestos and lead being released to the environment.

Santa Rosa Fire Department (SRFD) regulates materials and contaminants in Santa Rosa. The Santa Rosa Fire Department operates as a Certified Unified Program Agency (CUPA) and is designated as such by the State of California for hazardous material regulatory enforcement in Santa Rosa. CUPA programs include the Hazardous Materials Business Plan Program, Hazardous Waste Program, Underground Storage Tank Program, Accidental Release Program, and the portions of the Uniform Fire Code that address hazardous materials. General program requirements include inspections of businesses and review of permit conditions and procedures for the handling, storage, use, and disposal of hazardous materials. The Hazardous Materials Business Plan is used to keep track of the use of hazardous materials by businesses in
accordance with both state and federal laws. The Hazardous Waste Generator Program is based on the Hazardous Waste Control Law found in the California Health and Safety Code Division 20, Chapter 6.5 and regulations found in the California Code of Regulations, Title 22, Division 4.5.

The Santa Rosa Fire Department also administers the Local Oversight Program (LOP). The LOP oversees the investigation and cleanup of fuel releases from underground or above ground storage tanks. Sites are entered into the LOP when a release from an underground or above ground tank is reported. A similar program provides for the permitting, monitoring, and surveillance of septic tanks, chemical toilets, and vaults, as well as abandonment and disposal of septic waste within Sonoma County.

The Santa Rosa Industrial Waste Program enforces regulations issued to businesses that discharge wastewater into the Santa Rosa Subregional Water Reclamation System. The Industrial Waste Program consists of inspections, monitoring, and permitting of businesses to ensure their compliance.

Emergency Response and Regulation Enforcement

First responders to hazardous material emergencies could be the Santa Rosa Fire Department or hazardous material specialists such as the Sonoma County Hazardous Materials Response Team. State law requires that first responders to a release of hazardous materials have a minimum 40 hours of training in accordance with the Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER) standard (Code of Federal Regulations, 1910.120).

Enforcement of environmental regulations depends upon both public and private reporting of spills, leaks, or other violations. The Santa Rosa Police Department Environmental Crimes Unit also provides enforcement. Officers in this program have specialized training in environmental crime investigations and hazardous materials recognition and work closely with regulatory specialists from other City departments such as the Santa Rosa Fire Department Hazardous Materials Team; Utilities Department Industrial Waste Section; Community Development Building Code Inspectors; and the Public Works Department Storm Water Management Program, to insure that environmental regulations are adhered to.

The Sonoma County Environmental Health Division is charged with administering the State of California’s Medical Waste Program. Regulation of potentially hazardous pesticide and herbicides is under the jurisdiction of the Sonoma County Agricultural Commissioner. The City of Santa Rosa Public Works Department administers the Stormwater Management Program that is designed to reduce urban runoff from polluting local waterways through use of best management practices, monitoring and other techniques.

Standards such as the Total Threshold Limit Concentration (TTLC) and Soluble Threshold Limit Concentration (STLC) have been developed to establish hazardous materials concentrations for landfills through work completed by the California Department of Toxic Substances Control (DTSC). Most of this information can be found through a search of environmental databases and file review at local agencies. Regulatory agencies maintain a database of properties and businesses affected by contamination or properties and businesses where there is significant risk from contamination due to use, storage, or disposal of hazardous materials, underground fuel tanks, or other hazards. A few of the databases with information on hazardous materials are the Federal Superfund list started through the Comprehensive Environmental Response, Conservation, and Liability Act (CERCLA) of 1980, the United States EPA’s Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS), HAZNET, the leaking underground storage tank information system (LUST), and the Cortese list. These databases are also a primary source of information for legal disclosures, such as Phase I Environmental Site Assessments (ESA), and may often facilitate interagency cooperation.
Transportation of hazardous materials on the highways is regulated through the Federal Department of Transportation (DOT) and the California Department of Transportation (Caltrans). This includes a system of placards, labels, and shipping papers required to identify the hazards of shipping each class of hazardous materials. Existing federal and state laws address risks associated with the transport of hazardous materials. These laws include regulations outlined in the Hazardous Materials Transportation Act administered by the DOT. Caltrans is mandated to implement the regulations established by the DOT, which is published as the Federal Code of Regulations, Title 49, commonly referred to as 49 CFR. The California Highway Patrol (CHP) enforces these regulations. Regulations of hazardous materials and wastes include the manufacture of packaging and transport containers; packing and repacking; labeling; marking or placarding; handling; spill reporting; routing of transports; training of transport personnel; and registration of highly hazardous material transport.

Santa Rosa General Plan 2035

In addition to conforming with regulatory agencies, the Specific Plan must adhere to the goals and policies of the Santa Rosa General Plan 2035. Cities and counties are required by California law to create a general plan. A general plan is defined as a comprehensive, long-term plan for the physical development of the county or city, and any land outside its boundaries which in the planning agency’s judgment bears relation to its planning. This section identifies the goals and policies of the Santa Rosa General Plan 2035 that are applicable to Hazardous Waste.

City of Santa Rosa General Plan (2035), Noise and Safety Element

The intent of the Noise and Safety Element is to identify and evaluate natural and man-made hazards affecting Santa Rosa including noise generation, geology and seismicity, flooding, hazardous materials, and wildland fires. The Noise and Safety Element identifies goals and policies related to Hazardous Materials including preparing for disasters and adopting the Local Hazard Mitigation Plan. Policies include requiring remediation and cleanup, and evaluate risk prior to reuse, in identified areas where hazardous materials and petroleum products have impacted soil or groundwater and requiring that hazardous materials used in businesses and industry are transported, handled, and stored in accordance with applicable federal, state, and local regulations. Policies also restrict siting of businesses, including hazardous waste disposal facilities, that use, store, process, or dispose large quantities of hazardous materials or wastes in areas subject to seismic fault rupture or very violent ground shaking and identify and regulate appropriate regional and local routes for transportation of hazardous materials and hazardous waste including requiring that fire and emergency personnel can easily access these routes for response to spill incidences. Other policies include requiring commercial and industrial compliance with the Sonoma County Hazardous Materials and Waste Management Plan and to generate and support public awareness and participation in household waste management, control, and recycling through county programs including the Sonoma County Household Hazardous Waste Management Plan.

Environmental Setting

History

Hazardous materials within the Specific Plan area reflect the development history of Downtown Santa Rosa. Downtown Santa Rosa developed rapidly following arrival of the railroad in 1870 with construction of warehouses and mills located in close proximity to the railroad lines. The 1888 to 1893 Sanborn Maps in the vicinity of the original railroad passenger depot shows the Santa Rosa Woolen Mills, Santa Rosa Roller Flouring Mill, Santa Rosa Planing Mill and lumber yard, Santa Rosa Packing Company, and Crawford’s Fruit Dryer and fruit packing warehouses, Cutting Fruit Packing Co., and Hunt Bros. Fruit Packing Co., and several lumber yards. Later in 1904 to 1908, the California Fruit Canners Association takes over the fruit packing businesses and several new storage facilities were added. Later as
automobiles became popular, service stations and automotive repair facilities opened with accompanying storage and use of petrochemicals. Many of the businesses that developed in the downtown area included potential use and storage of hazardous materials such as Laundry and Printing operations, and Agricultural supply warehouses have continued to operate with the Western Farm Center is still operating on Seventh Street. Other industry has occupied the larger parcels in undesirable areas such as next to Highway 12 and the railroad tracks including wrecking yards, cement factories, and various corporate yards. Much recent contamination is associated with leaking underground fuel tanks, especially older tanks placed in the 1970’s and 1980’s. Redevelopment must also take into account the hazards associated with old lead-based paint and asbestos containing building materials that may be found in older structures and have to be handled as hazardous materials during demolition activities.

Records Review

An updated EDR Radius Map Report was obtained for the area within 1-mile radius of the existing Downtown Station site and covers the entire Specific Plan area and some of the surrounding adjacent areas. Federal databases that reported sites within the Specific Plan area include the CERCLIS, CERCLIS-NFRAP, and RCRA database lists. State and local databases include REF, CA CORTESE, CA HAZNET, LUST, CA FID, CA SLIC, UST, HIST UST, SWEEPS and NOTIFY 65. There is also a listing of local sites in the City’s CUPA Listings section. Many sites are reported in multiple databases.

Federal Databases

CERCLIS, the Comprehensive Environmental Response, Compensation and Liability Information System, contains sites proposed or on the National Priorities List. These sites have been reported to the federal environmental protection agency (EPA). Only one site was documented to be on the list and likely require further remediation. That site is called C&D Batteries, a division of Electra Corporation at 265 Roberts Avenue. C&D batteries is reported for lead contaminated soil and generating aqueous solution with less than 10 percent organic residue. Another site, the PG&E Gas Plant at 5th and Mendocino, underwent remediation in 2015. While the case is currently open under verification monitoring, the site is capped and under land use restrictions. The PG&E site is listed in the CERCLIS-NFRAP (no further remedial action planned) database.

Consulting the EDR report, sites previously active in the Envirostor database were former wrecking yards that have been assessed and closed. Those that are currently listed as active in the Envirostor database have been turned over to the RWQCB. The three listed sites are the former C&D Batteries, and PG&E Gas and Power Plant as discussed above and the Point St. George Fisheries site discussed below.

Resource Conservation and Recovery Act (RCRA) sites transport, store, treat and/or dispose of significant volumes of hazardous waste. Reported sites are Westside Foreign Auto at 12 West 3rd Street, Burt Oliisner Painting at 206 West 6th Street, and De Paz Autobody at 77 West 3rd Street. Westside Foreign Auto is reported for leaking waste oil, storing aqueous solution with less than 10 percent total organic residues, and oil/water separation sludge. The other businesses are small quantity waste generators with no reported violations.

Overview

Often the most significant soil and groundwater contamination is associated with leaking underground storage tanks. Older service stations and other businesses with fuel storage tanks occasionally leaked petroleum hydrocarbons such as gasoline or diesel fuel from underground tanks. Other businesses with contaminant issues are automotive repair sites or maintenance yards, which have a high risk from leaking petrochemicals, solvents, and other hazardous materials. Other types of businesses found through the environmental database search include utility plants, cement factories and even restaurants that may maintain significant volumes of oil and grease considered hazardous.
While a site-by-site analysis of these sites within the planning area is outside the scope of this report, the distribution of these sites can be seen from the map produced by EDR.

The distribution of hazardous materials sites is controlled by zoning and proximity to transportation corridors. Residential areas have relatively few or no sites, while there are many sites along the railroad corridor near downtown Santa Rosa. There is also a concentration of sites east of Santa Rosa Plaza in the area between Mendocino Avenue and B Street.

Due to the close proximity of sites there may be an area-wide contamination issue, rather than that constrained to individual sites. The primary factor controlling the spread of subsurface contamination is the depth to groundwater and groundwater flow direction. The flow of groundwater may be constrained through the network of monitoring wells often constructed around sites with contaminated groundwater. The Geotracker database maintained by the State of California includes this information, some of which was included in the EDR report. The EDR report also summarized some basic information about groundwater. According to their map, groundwater flow in the area is generally westerly, except near Santa Rosa Creek, where subsurface flow is influenced by seepage into the creek and is therefore southwesterly north of the creek and northwesterly south of the creek. The depth to groundwater in the area is recorded at between 7 and 25 feet below ground surface, but is primarily found between 9 and 15 feet in depth.

Because there may be general low-level contamination of groundwater due to the industrial and commercial history of fuel and chemical use and storage within the Specific Plan area, it can be difficult to establish a single source for groundwater contamination detected in the area. Remediation of contamination is generally completed on a site-specific basis in accordance with general protection for the underlying groundwater aquifer. A basic assessment for each of the opportunity sites within the Specific Plan area was made by overlaying the map showing the database map of hazardous sites over the City of Santa Rosa Downtown Station Area Specific Plan showing the opportunity sites in the completion of the original Specific Plan.

Contaminated Soil and Hazardous Material Sites

Table 7.2 presents a summary of the hazardous material and contaminated soil sites in the overall Specific Plan area. Figure 7.6 presents the locations of North Coast RWQCB Leaking Underground Fuel Tank sites within the Specific Plan area. Table 7.3 presents a summary of the Certified Unified Program Agency (CUPA), Small Hazardous Waste Generators within the Specific Plan area. Figure 7.7 presents a map of the locations of the CUPA sites in the Specific Plan area.

Opportunity Site Summary

Opportunity sites were identified on the City of Santa Rosa Downtown Station Area Specific Plan map showing the project area during development of the original Specific Plan. Opportunity sites were proposed for future housing, commercial or parking structures to accommodate railroad users. The following section summarizes an update of documented hazardous materials sites that are contained within or adjacent to each of the opportunity sites identified in the original Specific Plan and the potential contamination issues associated with the sites.

(1) Imwalle Gardens

With a history of holding medium-low density housing and farming operations, this area has a very low potential for harboring hazardous waste. In 1997 there was a small residential diesel spill at 629 Third St. that had been cleaned up the same year. More recently, there has been
<table>
<thead>
<tr>
<th>Site</th>
<th>Address</th>
<th>Case Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th St. Partnership</td>
<td>24 Tenth Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Allefax</td>
<td>1 Sebastopol Road</td>
<td>Closed</td>
</tr>
<tr>
<td>Arco #4936</td>
<td>1010 Fourth Street</td>
<td>Closed</td>
</tr>
<tr>
<td>AT&T Communications</td>
<td>520 East 3rd Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Bertolli Estate</td>
<td>629 Third Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Boyett Petro.</td>
<td>171 Santa Rosa Avenue</td>
<td>Open</td>
</tr>
<tr>
<td>BP, College</td>
<td>300 College Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>C&D Batteries</td>
<td>265 Roberts Avenue</td>
<td>Open</td>
</tr>
<tr>
<td>Chevron #9-8153</td>
<td>136 College Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>Purity Products</td>
<td>1005 Cleveland Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>Clark’s Autoparts</td>
<td>203 Santa Rosa Avenue</td>
<td>Open</td>
</tr>
<tr>
<td>Creekside Convalescent Hospital</td>
<td>850 Sonoma Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>Crystal Clear Car Wash</td>
<td>257 College Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>Downey Property</td>
<td>109 Chestnut Street</td>
<td>Open</td>
</tr>
<tr>
<td>DZ Inc</td>
<td>258 Dutton Avenue</td>
<td>Open</td>
</tr>
<tr>
<td>Empire Cleaners</td>
<td>526 Sonoma Avenue</td>
<td>Open</td>
</tr>
<tr>
<td>G.K. Hardt</td>
<td>337 South A Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Grace Property</td>
<td>802 Donahue Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Greyhound Bus Depot</td>
<td>416 B Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Grindaland</td>
<td>400 South A Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Groth Motors</td>
<td>505 Santa Rosa Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>Hirsch</td>
<td>230 South A Street</td>
<td>Open</td>
</tr>
<tr>
<td>Industrial Machine</td>
<td>928 North Dutton Ave.</td>
<td>Inactive</td>
</tr>
<tr>
<td>Jerry Fritsch</td>
<td>218 Roberts Avenue</td>
<td>Open</td>
</tr>
<tr>
<td>Kaiser Sand and Gravel</td>
<td>1060 Maxwell Drive</td>
<td>Closed</td>
</tr>
<tr>
<td>McGowan Auto</td>
<td>112 Holbrook Street</td>
<td>Open</td>
</tr>
<tr>
<td>Mead Clark Lumber</td>
<td>175 Railroad Street</td>
<td>Closed</td>
</tr>
<tr>
<td>National Bank Redwoods</td>
<td>90 Santa Rosa Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>NWRR</td>
<td>20 West 6th Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Occhipinti One Step</td>
<td>210 Fifth Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Old Hospital</td>
<td>437 A Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Pt St. George fish</td>
<td>8 Sebastopol Road</td>
<td>Closed</td>
</tr>
<tr>
<td>Purity Products</td>
<td>4 Maxwell Court</td>
<td>Closed</td>
</tr>
<tr>
<td>S County Water</td>
<td>330 Hewett Street</td>
<td>Open</td>
</tr>
<tr>
<td>Santa Rosa Old Town Sewer Replacement</td>
<td>104 College Avenue</td>
<td>Inactive</td>
</tr>
<tr>
<td>Santa Rosa Public Safety Bldg</td>
<td>955 Sonoma Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>SCWA</td>
<td>330 Hewett Street</td>
<td>Open</td>
</tr>
</tbody>
</table>
Table 7.2. RWQCB Leaking Underground Storage Tanks

<table>
<thead>
<tr>
<th>Site</th>
<th>Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Gas</td>
<td>200 Fourth Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Shell Gas</td>
<td>255 Dutton Avenue</td>
<td>Open</td>
</tr>
<tr>
<td>Shell Gas</td>
<td>266 College Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>SR Corporate Yard</td>
<td>819 Donahue Street</td>
<td>Closed</td>
</tr>
<tr>
<td>SR Ice and Cold</td>
<td>806 Donahue Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Standard Oil</td>
<td>205 Chestnut Street</td>
<td>Open</td>
</tr>
<tr>
<td>Texaco</td>
<td>421 Santa Rosa Avenue</td>
<td>Closed</td>
</tr>
<tr>
<td>Washington Mutual</td>
<td>888 Fourth Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Westside Engine/Mach</td>
<td>12 West 3rd Street</td>
<td>Closed</td>
</tr>
<tr>
<td>Westside Plaza Drycleaners</td>
<td>320 West 3rd Street</td>
<td>Open</td>
</tr>
<tr>
<td>Yellow & Roadway</td>
<td>270 Dutton Avenue</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Table 7.3. Certified Unified Program Agency (CUPA), Small Hazardous Waste Generators

<table>
<thead>
<tr>
<th>Site</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westside Engine</td>
<td>12 Third Street</td>
</tr>
<tr>
<td>Paul’s Empire Headshot</td>
<td>112 Roberts Avenue</td>
</tr>
<tr>
<td>Kelly Moore Paint Company</td>
<td>217 Roberts Avenue</td>
</tr>
<tr>
<td>Reliance Fine Finishing</td>
<td>219 Roberts Avenue</td>
</tr>
<tr>
<td>Randy’s Design and Machine</td>
<td>242 Roberts Avenue</td>
</tr>
<tr>
<td>Roadrunner Mobile Truck Repair</td>
<td>256 Dutton Avenue</td>
</tr>
<tr>
<td>Darren J Cossey</td>
<td>180 Sebastopol Road</td>
</tr>
<tr>
<td>Yellow & Roadway Freight</td>
<td>270 Dutton Ave.</td>
</tr>
<tr>
<td>Unocal #4320</td>
<td>370 Sebastopol Road</td>
</tr>
</tbody>
</table>
Figure 7.6 Leaking Underground Fuel Tank Sites Identified by the North Coast Regional Water Quality Control Board

Legend

Hazardous Material Sites
- Closed
- Inactive
- Open

= SMART Rail
= Undercrossing

Source: Sites Derived from Regional Water Quality Board Geotracker Database; City of Santa Rosa, 2018; Dyett & Bhatia, 2019
Figure 7.7 Santa Rosa Fire Department Certified Unified Program Agency Sites

Legend

- CUPA Sites
- SMART Rail
- Undercrossing

Source: Quest, 2019; City of Santa Rosa, 2018; Page & Turnbull, 2019; Dyett & Bhatia, 2019
an open site assessment of a Westside Plaza Drycleaners, currently Park Avenue Cleaners, located at 320 W. Third St. According to Geotracker’s report, potential contaminants of concern are Tetrachloroethylene (PCE) and Trichloroethylene (TCE) with potential media of concern being aquifers for drinking water supply, indoor air, soil, and soil vapor. If this site was deemed contaminated by dry cleaning by-products, hazardous waste removal would be necessary, including potentially groundwater remediation.

(2) Maxwell Court

Since the Downtown Station Area Specific Plan Hazards and Hazardous Materials Section was originally published, many of the identified sites in this area have been deemed closed by the North Coast Water Board. Potential contaminants of concern at these sites were primarily gasoline, diesel, and automotive waste oil. Kaiser Sand and Gravel, now Bo Dean Asphalt Plant, was reported for a diesel spill in the LUST database, but the site was remediated and verification monitoring was completed in 2012. There is an open remediation site nearby at 2243 Briggs Ave., the location of a former auto salvage yard, which is a potential source of TCE contamination. As of 2015, this site is still in remediation. The site listed as Purity Products in the Specific Plan, a swimming pool, pest, and landscape supply store, was witnessed storing hazardous chemicals in closed drums and polycarbonate containers on a concrete slab next to the building. Once located at 4 Maxwell Court, this business has now relocated or ceased operations. Currently, the only open case in the vicinity is Industrial Machine and Engine at 928 North Dutton Ave. This site was issued a Hazardous Waste Illegal Discharge violation in 1987 and 1990 by the Santa Rosa Fire Department after observing oil staining the ground during site inspections. A laboratory report from a 1992 file indicated that a soil sample was analyzed and contained 120 ppm motor oil, but did not give a sample location on the property. The site is inactive as of 2009.

(3) SCWA site

This approximately 1-acre vacant parcel is located behind the private residence at 330 Hewett Street. The site has elevated concentrations of lead in the soil in the southern part of the site, which according to Geotracker, may have been brought in as fill material. Groundwater had been tested, and was not subjected to lead contamination. As of 2009, the site is under assessment.

(4) Western Farm Center

The old City of Santa Rosa corporate yard that had undergone remediation to remove gasoline contamination has since been turned into a Rite Aid store, which is listed as a small waste generator. The 802/806 Grace property, which had potential for diesel and gasoline contaminating the aquifer, was remediated in 2009 and the site closed after verification in 2013.

(5) TORPA Site (NWWR Site)

The TORPA site, now the N.W.R.R. Site at 20 West Sixth St. that was cited for a leaking underground storage tank has been assessed and the case was closed in 2009. A nearby site, Westside Engine and Machine as well as Westside Foreign Auto, both located at 12 West Third St., had an underground storage tank removed in 1992. Soil samples taken at this time around the tank excavation showed concentrations of TPH-g, ethyl benzene, and total xylenes. In 2008, three soil borings were taken at the site and confirmed that these contaminants were still present in the groundwater at lower concentrations. The site property has since been annexed to the City of Santa Rosa and the case has been transferred to NCRWQCB. The installation of monitoring wells for assessing the property was scheduled in 2018.
Environmental Considerations

(6) Sebastopol Road/Roberts Avenue

The businesses in the area south of Highway 12 and bordered by Interstate 101, Sebastopol Road, and North Dutton Ave. have undergone some turnover. Allefax, Point George Fisheries, C&D Batteries, and McGowen Auto Wrecking Yard have all since closed and a major remediation effort has been put in place to remediate contamination in this industrial area. The Allefax site at 1 Sebastopol Road excavated contaminated soil from former tank locations in 2005 and has undergone soil and groundwater monitoring up until 2013, at which point the site was deemed acceptable and the case closed in 2014. Point St. George Fisheries, a large fish processing and transporting facility, closed in 1993, with the building demolished in 2000. Over 4,000 tons of petroleum contaminated soil was excavated from the site, along with monitoring well installation and soil boring sampling to monitor contamination. It was determined that petroleum constituents no longer posed a threat to human health, and the case was closed in 2013. The site is proposed to redevelop into residential housing, including 110 two-story homes.

C&D Batteries, located at 265 Roberts Ave., was listed as a Superfund Site in the Envirostor Database. In an assessment report from 1997, soil samples collected by the U.S. EPA detected high levels of lead in and around the site. The EPA transferred control to the NCRWQCB in 1999 and the site has been remediated to some extent, but remediation activities appear to be currently inactive as of 2009. This case is still open.

Neighboring McGowen Auto Wrecking, which operated between the 1960s and 1990s, was assessed for potential diesel, nickel, and automotive waste oil contamination. According to the Cleanup Action Report in the SWRCB database, most of the site is now covered in concrete, and as of 2015, the site is inactive, with no ongoing remediation activities.

The Shell Service station and the former DZ petroleum bulk plant, located at 255 and 257 Dutton Ave., respectively, removed four underground storage tanks in 1998. The surrounding soil was contaminated with TPH as gasoline, BTEX, and MTBE, and was removed in 2009. The site is still open with verification monitoring ongoing as of 2015.

(7) Walter Property

Several businesses are present on the Walter Property. Mead and Clark was cited for a leaking gasoline tank in 1986, remediated three times throughout 1989 to 2007, and was closed by the NCRWQCB in 2014. Occhipinti One Step Service Center was reported for a leaking underground storage tank in 1998, was remediated in 2009 and the case was closed in 2013. The location at 210 Fifth St. has since been turned into Parking Lot 15. Hotel La Rose, located at 101 Fifth Street, was cited for a leaking underground storage tank that was remediated and the case was closed in 2014.

(8) Courthouse Square

This site is in close proximity to old Memorial Hospital, where an underground storage tank released diesel fuel in 1991. Subsequently, contaminated soils were excavated and disposed of and the case was closed on August 11, 1998. The Empire Building is located across the street from old Memorial Hospital at 37 Old Courthouse Square and the surrounding sites are around Third Street and B Street. This cost recovery site held a heating oil tank, which was remediated in 2009, with the case being closed in 2015. According to the Geotracker report, however, there are several tanks in the nearby area, such as the former Greyhound Bus Depot and Santa Rosa DPW, that are believed to be contamination point sources.
(9) B Street Parking Lot

This site is located in close proximity to the Greyhound Bus Depot at 416 B Street. It was reported for a minor leak of diesel requiring no further remedial action.

(9) Traverso’s

The Traverso’s site at 106 B Street located near Santa Rosa Plaza, was cited for diesel, gasoline, and motor oil contamination in 2007. The site was remediated in 2013 and closed in 2014.

(10) D/3rd Street Garage (Garage 5)

The area around the Sonoma Avenue/Santa Rosa Avenue intersection has undergone remediation from a large plume that developed from a former commercial petroleum fueling facility. The site is located nearby or within the current Prince Memorial Greenway. The site has undergone soil excavation, groundwater extraction, and ozone sparging intermittently since 2005. As of 2010, the project is still open and undergoing remediation and monitoring.

(11) South A Street

There are several sites along South A Street, bordering Highway 12 and US Highway 101 in the residential area, that have been identified in the RWQCB LUST site. The Grindaland Estate, located at 400 South A Street, was a former retail gasoline station and auto repair facility, and is located adjacent to the G.K. Hardt property at 337 South A Street, which held potential contaminants of diesel and gasoline. Both of these cases were cleaned up and closed in 2012. The Phil Hirsch site, located at 230 South A Street, was a former dry-cleaning facility that reportedly used a 1,000-gallon tank for storage of cleaning chemicals. The tank was removed in 1987, and several groundwater monitoring wells were installed. As of 2017, the case is open and under assessment and interim remedial action.

(12) Brookwood Avenue

Along Brookwood Avenue between College Avenue and Sonoma Avenue are several closed sites that had undergone remediation for gasoline and diesel contamination. Washington Mutual, formerly Swift Garage, at 888 Fourth Street was assessed and the case was closed in 2013. Arco #4936 is an active gas station that discovered a petroleum hydrocarbon release when replacing five underground storage tanks in 1989. The petroleum impacted soil was over-excavated and removed from the site in 2003 during a station overhaul, and was open to verification monitoring up until 2012, when the case was deemed closed. The Santa Rosa Public Safety Building, located at 955 Sonoma Avenue, underwent a groundwater impact assessment in 2006 due to the building’s former tank system. The case underwent verification monitoring in 2010 and was closed in 2012.

(13) College Avenue

There are many former and current gas stations along College Avenue between Brookwood and North Dutton Avenue. Chevron, BP, Shell, and the current Flyers, as well as former gas stations all had cases of leaking underground storage tanks. These sites were remediated between 1994 and 2013. There are currently no open cases.

Hazardous Materials Constraints

Hazardous materials constraints within the Specific Plan area may be divided into two general categories. These are: (1) demolition and construction hazards related to hazards and hazardous materials exposure to be encountered during site redevelopment and reconstruction; and (2) post development impacts to local residents,
visitors and transit users from hazards and hazardous materials due to site redevelopment, use and maintenance of the railroad.

Identified construction and demolition hazards include inhalation of possible asbestos, lead-based paint and creosote associate with old structures and railroad ties, and general exposure associated with site redevelopment, including remediation. Dust control is a key factor in site redevelopment which includes demolition, site grading and excavation activities. Certain sites will require closure of existing facilities. These sites may contain lingering contamination that will need remediation before redevelopment. In order to protect the community and workers on these sites a Demolition Plan, Soil Management Plan, and Health and Safety Plan will likely need to be developed for each site with identified open hazardous materials issues. The plans will need to include provisions for community protection, methods of demolition and construction, management of soils and stockpiles including off-haul and routes of truck travel, and requirements for personal protective equipment such as respirators, impermeable clothing, and gloves. Other sites that have had leaks or documented contamination that has been cleaned up to where no further action is required by the Fire Department, Department of Toxic Substances Control, Regional Water Quality Control Board, or other jurisdiction will need to be reevaluated to see if that would extend to site redevelopment or was a condition of continued operation of the previous business. Former Industrial and Commercial sites may require a greater level of site cleanup in order to be considered for residential or public use. The level of exposure risk on these sites would be variable. Finally, sites with no hazards or hazardous materials outside of normal construction related risks would have a low exposure risk.

The larger sites with existing industrial development such as the Maxwell Court site and the Sebastopol Road/Roberts Avenue sites will likely require significant remediation following closure of local businesses and subsequent reconstruction. A number of the sites in the Maxwell Court area and Sebastopol Road/Roberts Avenue area previously identified as having site contamination have undergone site cleanup activities and received no further action letters from the oversight agencies. However, a number of these sites are still active.

At the Imwalle Gardens site, the Park City Cleaners site may have significant contamination issues due to the use, storage and spills of solvents used in the dry-cleaning operations.

The Western Farm Center site, which is still active as of the Specific Plan Update, located next to the existing railroad tracks is reported for leaking underground storage tanks that were likely removed and historic underground diesel tanks. Prior to redevelopment any underground storage tanks would need to be removed within the development footprint, with permits obtained from the Santa Rosa Fire Department.

The other site along the railroad corridor, the TORPA/NWRR site, is in the process of undergoing groundwater monitoring activities required by the NCRWQCB.

Post-development impacts will depend upon the nature of the new development. Replacement of industrial areas with environmentally engineered commercial and residential development would likely lower public risk to hazardous materials exposure.

The general exposure risk to future railroad users and residents and visitors within the plan area from hazardous materials is expected to be negligible since the railroad is not proposed for hazardous material freight and new development is not expected to permit use of hazardous materials. However, there is an increased risk of collisions along the railroad corridor, release of fuel from a collision, and from a collision impacting any hazardous storage facilities along the railroad corridor.

Outlook

The exposure risk during construction can be mitigated through proper worker training and decontamination, while final site remediation should reduce human exposure risk and environmental hazards both during and
after construction to acceptable levels as dictated by regulatory agency oversight. Should newly identified contamination be found on a redevelopment site during construction, remedial efforts would need to be developed and implemented. This would include a soil management plan (SMP) or other site remediation plan. Shallow soil contamination may only require excavation and replacement with clean soils. Contaminated groundwater would likely require more sophisticated cleanup and a network of monitoring wells. Regional Water Quality Control Board (RWQCB) environmental screening levels or site-specific risk assessments would be used to identify remediation goals and cleanup standards protective of proposed land uses. The cost of remediation will depend upon the length and nature of work and would typically be borne by the property owner or responsible party as determined by the regulatory agency responsible for oversight. While hazards and hazardous materials would not preclude development of the project, the cost of remediation as part of site redevelopment would be a significant initial cost if the land purchase were for an “as-is” condition.

7.3 Hydrology and Flooding

This section characterizes the hydrologic setting of the planning area and known flooding risk according to Federal Emergency Management Agency (FEMA) classifications and mapping.

Regulatory Framework

This section summarizes key federal, State and city statutes, regulations and policies that would apply to the Specific Plan.

1. Federal Laws and Regulations

a. Federal Emergency Management Agency

The Federal Emergency Management Agency (FEMA) administers the National Flood Insurance Program (NFIP) to provide subsidized flood insurance to communities that comply with FEMA regulations limiting development in floodplains. FEMA also issues Flood Insurance Rate Maps (FIRMs) that identify which land areas are subject to flooding. These maps provide flood information and identify flood hazard zones in the community. The design standard for flood protection is established by FEMA, with the minimum level of flood protection for new development determined to be the 1-in-100 annual exceedance probability (AEP) (i.e. the 100-year flood event).

b. Federal Clean Water Act

The U.S. Environmental Protection Agency (EPA) is the lead federal agency responsible for water quality management. The Clean Water Act (CWA) of 1972 is the primary federal law that governs and authorizes water quality control activities by the EPA as well as the states. Various elements of the CWA address water quality. These are discussed below. Wetland protection elements, including permits to dredge or fill wetlands, are administered by the U.S. Army Corps of Engineers (USACE) can be found under Section 404 of the CWA.

Under Section 401 of the CWA, an applicant for a Section 404 permit (to discharge dredged or fill material into waters of the United States) must first obtain a certificate from the appropriate State agency stating that the fill is consistent with the State’s water quality standards and criteria. In California, the authority to either grant water quality certification or waive the requirement is delegated by the State Water Resources Control Board (SWRCB) to the nine regional water quality control boards (RWQCBs).

Under Section 303(d) of the CWA, states are required to develop lists of water bodies that would not attain water quality objectives after implementation of required levels of treatment by point-source dischargers (municipalities and industries), Section 303(d) requires that
Downtown Station Area Specific Plan Update
DRAFT Existing Conditions Report

7-30 | Environmental Considerations

the State develop a total maximum daily load (TMDL) for each of the listed pollutants. The TMDL is the amount of loading that the water body can receive and still be in compliance with water quality objectives. The TMDL can also act as a plan to reduce loading of a specific pollutant from various sources to achieve compliance with water quality objectives. The TMDL prepared by the State must include an allocation of allowable loadings to point and nonpoint sources, with consideration of background loadings and a margin of safety. The TMDL must also include an analysis that shows the linkage between loading reductions and the attainment of water quality objectives. The EPA must either approve a TMDL prepared by the State or, if it disapproves the State’s TMDL, issue its own. National Pollutant Discharge Elimination System (NPDES) permit limits for listed pollutants must be consistent with the waste load allocation prescribed in the TMDL. After implementation of the TMDL, it is anticipated that the problems that led to placement of a given pollutant on the Section 303(d) list would be remediated.

Under federal law, the EPA has published water quality regulations under Volume 40 of the Code of Federal Regulations (40 CFR). Section 303 of the CWA requires states to adopt water quality standards for all surface waters of the United States. As defined by the CWA, water quality standards consist of two elements: (1) designated beneficial uses of the water body in question and (2) criteria that protect the designated uses. Section 304(a) requires the EPA to publish advisory water quality criteria that accurately reflect the latest scientific knowledge on the kind and extent of all effects on health and welfare that may be expected from the presence of pollutants in water. Where multiple uses exist, water quality standards must protect the most sensitive use. In California, the EPA has designated the SWRCB and its RWQCBs with authority to identify beneficial uses and adopt applicable water quality objectives.

The NPDES permit program was established in the CWA to regulate municipal and industrial discharges to surface waters of the United States. Federal NPDES permit regulations have been established for broad categories of discharges, including point-source municipal waste discharges and nonpoint source stormwater runoff. NPDES permits generally identify effluent and receiving water limits on allowable concentrations and/or mass emissions of pollutants contained in the discharge; prohibitions on discharges not specifically allowed under the permit; and provisions that describe required actions by the discharger, including industrial pretreatment, pollution prevention, self-monitoring and other activities.

In November 1990, the EPA published regulations establishing NPDES permit requirements for municipal and industrial stormwater discharges. Phase 1 of the permitting program applied to municipal discharges of stormwater in urban areas where the population exceeded 100,000 persons. Phase 1 also applied to stormwater discharges from a large variety of industrial activities, including general construction activity if the project would disturb more than five acres. Phase 2 of the NPDES stormwater permit regulations, which became effective in March 2003, required that NPDES permits be issued for construction activity for projects that disturb between one and five acres. Phase 2 of the municipal permit system (known as the NPDES General Permit for Small MS4s) required small municipal areas of less than 100,000 persons to develop stormwater management programs. The RWQCBs in California are responsible for implementing the NPDES permit system (see additional information below).

2. State Laws and Regulations

a. Water Quality

In California, the SWRCB has broad authority over water quality control issues for the State. The SWRCB is responsible for developing statewide water quality policy and exercises the powers delegated to the State by the federal government under the CWA. Other State agencies with jurisdiction over water quality regulation in California include the California Department of Health Services (DHS) (for drinking water regulations), the California Department of Pesticide Regulation, the California Department of Fish and Game (CDFG) and the Office of Environmental Health and Hazard Assessment.
Regional authority for planning, permitting, and enforcement is delegated to the nine RWQCBs. The regional boards are required to formulate and adopt water quality control plans for all areas in the region and establish water quality objectives in the plans. The Specific Plan area is within the jurisdiction of the North Coast RWQCB.

The Porter-Cologne Water Quality Control Act (Porter-Cologne Act) of 1969 is California’s statutory authority for the protection of water quality. Under the act, the State must adopt water quality policies, plans, and objectives that protect the State’s waters for the use and enjoyment of the people. The act sets forth the obligations of the SWRCB and RWQCBs to adopt and periodically update water quality control plans (Basin Plans). Basin Plans are the regional water quality control plans required by both the CWA and Porter-Cologne Act in which beneficial uses, water quality objectives and implementation programs are established for each of the nine regions in California. As issued under the North Coast RWQCB Water Quality Control Plan, Santa Rosa area falls under the Water Quality Control Plan (Basin Plan) for the North Coast Basin. The act also requires waste dischargers to notify the RWQCBs of their activities through the filing of Reports of Waste Discharge (RWD) and authorizes the SWRCB and RWQCBs to issue and enforce waste discharge requirements (WDRs), NPDES permits, Section 401 water quality certifications, or other approvals.

b. Waterways

The California Department of Fish and Wildlife (CDFG) requires a Streambed Alteration Agreement prior to any construction activity occurring within the bed, channel or banks of any California river, stream or lake (see Fish and Game Code, Section 1601-1603). Such an agreement would be required in the event that redevelopment of the City Hall site would require construction within the creek beds.

3. Local Programs and Regulations

a. City of Santa Rosa General Plan Goals and Policies

The City of Santa Rosa’s existing General Plan includes various goals and policies that relate to managing, maintaining, and improving stormwater drainage and capacity. In the Public Services and Facilities Element, Goal PSF-I and Policies PSF-I-1 through PSF-I-9 outline stormwater and other drainage considerations, especially for creek runoff. In the Noise and Safety Element, Goal NS-C and Policy NS-C-7 prohibit water storage facilities, water conveyance facilities, levees, and water detention facilities to be developed in high-risk seismic hazard areas. In terms of flooding, Goal NS-D and Policies NS-D-1 through NS-D-4 describe how to minimize hazards with storm flooding and drainage requirements for new development.

b. Santa Rosa Storm Water Management Plan

In 1997, Santa Rosa was issued a joint NPDES permit with the County of Sonoma and Sonoma County Water Agency (SCWA) by the RWQCB. The NPDES permit identifies the Storm Water Management Plan (SWMP) implemented by the City to control and eliminate stormwater pollution discharge. The City must comply with the provisions of the permit by ensuring that new development and redevelopment mitigate water quality impacts to storm water runoff both during construction and operation periods of projects.

Under direction from the SWRCB, the City prepared a Standard Urban Stormwater Mitigation Plan (SUSMP). The SUSMP was developed in 2003 as a part of the NPDES permit for the City of Santa Rosa, the County of Sonoma and the SCWA. The purpose of the SUSMP is to manage the quality and quantity of storm water runoff in the Santa Rosa area and to aid in the conservation of natural areas in the region. The SUSMP describes and evaluates various “Best Management Practices” (BMPs) for storm water management and outlines procedures for BMP maintenance and inspection. Both private-sponsored and public capital
improvement projects in the Santa Rosa area are governed by SUSMP requirements.

Additionally, a Notice of Intent (NOI) with the RWQCB is required to be covered under the State NPDES General Construction Permit for discharges of storm water associated with construction activity. A developer must propose control measures that are consistent with the State General Permit. A Storm Water Pollution Prevention Plan (SWPPP) must be developed and implemented for each site covered by the general permit. According to the City of Santa Rosa Public Works Department’s Storm Water Management Plan, a SWPPP should include SUSMP BMPs designed to reduce potential impacts to surface water quality during construction of the project.

c. The Citywide Creek Master Plan

The Citywide Creek Master Plan provides a set of creek-related policies and recommendations for site-specific improvements to the nearly 100 miles of creeks found throughout Santa Rosa. The plan was first adopted in 2007 and was updated in 2013. Recommendations include areas for habitat conservation, design guidelines, creek restoration, watershed-specific recommendations and plan concepts. Section 4.2.1 of The Citywide Creek Master Plan provides watershed specific recommendations for Santa Rosa Creek. This plan splits up the Santa Rosa Creek watershed into 8 reaches; reaches 3, 4 and 5 are within the downtown specific plan area and are summarized in the next section.

d. Groundwater Master Plan

In 2013, the City of Santa Rosa adopted a Groundwater Master Plan (GWMP) which proves a strategic road map on how available groundwater can be most effectively used in a sustainable manner to meet the current and future needs of Santa Rosa residents. The GWMP includes recommendations and policies designed to guide the future role of groundwater and promote balanced use and sustainability for the groundwater resources available to the City.

e. Other Plans

In addition to the plans listed above, below is a list of other plans that have been adopted by the City of Santa Rosa that contains policies and recommendations to hydrology and water use:

- Incremental Recycled Water Program Master Plan (2007)
- Sewer Master Plan (2014)
- Water Master Plan (2014)
- Salt and Nutrient Plan (2014)

Environmental Setting

This section discusses the existing hydrology and water quality setting of the Specific Plan area.

1. Climate and Topography

The Specific Plan area is located in Downtown Santa Rosa, near the juncture of Highway 101 and Highway 12. The topography of the area is generally flat and slopes gently toward the southwest. Ground elevations range from approximately 140 feet above mean sea level (msl) at the western boundary of the Specific Plan area to 165 feet above msl at the eastern boundary.

The regional climate is characterized as Mediterranean, with dry, mild summers and moist, cool winters. About 80 percent of the total annual precipitation occurs during the months of November through March, with an average annual precipitation of 30 inches. According to the Western Regional Climate Center, average monthly temperatures range from a high of 83 degrees Fahrenheit in the summer to a low of 37 degrees Fahrenheit in the winter.
2. Regional Hydrology

The Specific Plan area is contained within the Santa Rosa Creek and Laguna de Santa Rosa sub-watersheds of the greater Russian River watershed (USGS Hydrologic Unit 18010110). Santa Rosa Creek, which passes through the southern portion of the Specific Plan Area, flows into the Laguna de Santa Rosa, which flows into the Russian River and ultimately drains into the Pacific Ocean near the town of Jenner on the Sonoma Coast. Together, the Santa Rosa Creek and Laguna de Santa Rosa sub-watersheds cover approximately 170 square miles in eastern and central Sonoma County.

Both the Santa Rosa Creek and Laguna de Santa Rosa sub-watersheds provide habitat for a number of rare, threatened and endangered species. The Laguna de Santa Rosa is the second largest freshwater wetland complex in Northern California and is an important migratory stopover for over 200 species of birds along the Pacific Flyway. Both the Laguna and Santa Rosa Creek are passageways for Coho salmon, Chinook salmon and steelhead. However, agricultural and urban developments over the past 150 years have significantly degraded the environmental quality of the major waterways of the region.

Santa Rosa Creek and the Laguna de Santa Rosa are currently listed on the Clean Water Act Section 303(d) List of Impaired Waterbodies. In this section, impairments for Santa Rosa Creek are indicated to be pathogens, sedimentation-siltation, and elevated water temperature and impairments for Laguna de Santa Rosa are indicated to be excessive sedimentation-siltation, phosphorous, nitrogen, mercury, low dissolved oxygen and elevated water temperatures.

3. Specific Plan Area Drainage

Santa Rosa Creek runs from east to west through the southern portion of the Specific Plan area. Throughout the Specific Plan area and larger Downtown area, the creek is contained in a trapezoidal channel for flood control purposes. The City is currently in the process of “naturalizing” Santa Rosa Creek in the Downtown area, including removing hardscape elements and providing habitat enhancement. Runoff from the paved surfaces of the Specific Plan area is collected in curbside gutters and storm drain inlets and routed through the City’s subterranean storm drain system to various outlets along the creek.

In the vicinity of the proposed SMART rail station and in most areas south of the station site, the land within the existing railway easement (approximately 25 to 30 feet on either side of the railroad tracks) is unpaved. There are no storm drain inlets in these areas; surface runoff ponds on top of the soil and gravel beside the railroad tracks and eventually infiltrates into the sub-surface.

4. Groundwater

The California Department of Water Resources (DWR) defines State groundwater basins based on geologic and hydrogeologic conditions. According to the DWR, the Specific Plan area is located in the Santa Rosa Plain Sub-basin of the greater Santa Rosa Valley Groundwater Basin. US Geological Survey Water Supply Paper 1427 established that the primary water-bearing unit of the Santa Rosa Plain Sub-basin is the Merced Formation, a Pliocene marine deposit of fine sand and sandstone with thin interbeds of clay and silty-clay, some lenses of gravel and localized fossils. Lower water-bearing units in the Santa Rosa Plain Sub-basin include the Glen Ellen Formation and Alluvium.

The City maintains a total of six municipal groundwater wells within the Santa Rosa Plain Sub-basin of the Santa Rosa Valley Groundwater Basin. Two wells are operated primarily to provide some landscape irrigation, and these wells are also permitted by the California Department of Health Services (DHS) to operate during an emergency outage condition; the status of two wells (Farmers Lane Wells No. 1 and 2) were recently changed from emergency to active status (by DHS on July 20, 2005); one well is operated to provide minor amounts of landscape irrigation water supply only; and one well only provides water during an emergency outage condition. Since 2000, the City has only pumped an estimated 161
acre-feet of groundwater from these wells, which averages approximately 27 acre-feet per year (afy) for the last six years. According to the Water Supply Assessment for Downtown Station Area Specific Plan, based on projected future use of the converted Farmers Lane wells, projected City groundwater pumpage is anticipated to be up to 2,300 afy, about 6.6 percent of the City’s projected total water supply, by the year 2020.

According to a 1982 DWR study “Evaluation of Groundwater Resources in Sonoma Valley, Volume 2: Santa Rosa Plain” groundwater quality in the sub-basin is generally in compliance with drinking water quality standards; most groundwater problems in the basin are aesthetic issues associated with high hardness or high concentrations of iron and manganese. However, low-level contamination of groundwater exists within the Specific Plan area due to the industrial history of the area. Groundwater quality within the Specific Plan area is described in the Hazardous Materials as well.

According to well log data maintained by the DWR with data from Environmental Data Resources, depth to groundwater in the Specific Plan area ranges between seven and 25 feet below ground surface (bgs), with most groundwater located between nine and 15 feet bgs. Groundwater flow in the area is generally westerly. However, based on the relatively shallow depth to groundwater and the depth of the creek channel, some local groundwater is assumed to flow into Santa Rosa Creek on a seasonal basis.

According to the DWR Bulletin 118, a groundwater model for the Santa Rosa Plain Sub-basin was prepared by the DWR in 1982. The 15-year period from 1960-61 through 1974-75 was selected as the study period for the Santa Rosa Plain Sub-basin because it contained a mixture of wet and dry years approximating long-term climatic conditions. The City of Santa Rosa 2006 Water Supply Assessment for Downtown Station Area Specific Plan found that the average annual natural recharge for the period 1960 to 1975 was estimated to be about 29,300 afy. Average annual pumping during the same time period was estimated to be approximately 29,700 afy, indicating that the annual natural recharge and the annual pumping within the sub-basin were essentially in balance.

5. Flooding

In response to major flooding in the 1930s and 1950s, many of Santa Rosa's waterways were channelized and several weirs and reservoirs were constructed. This flood control work was completed in the 1970s and is detailed in the 1958 Central Sonoma Watershed Plan. In the late 1990s, the Army Corps of Engineers (ACOE) initiated a study that considered removal of levees paired with creek restoration and additional flood control measures. The study was dropped by the ACOE in 2015, but is expected to resume under the custodianship of Sonoma Water. Associated with this initiative, new Federal Emergency Management Agency (FEMA) flood maps are being produced, which have the potential to expand the mapped 100-year flood plain into portions of the DSASP plan area. Additionally, a storm drain master plan is expected to be prepared and adopted within the DSASP study window. The current FEMA flood map has been prepared for the Specific Plan Area and shown in Figure 7.8.

6. Creeks

Description of the Creeks

Figure 7.8 shows the location of the two creeks within the study area: Matanzas Creek and Santa Rosa Creek. Only a small portion of Matanzas Creek is in the study area and acts as a tributary to Santa Rosa Creek. Section 4.2.1 of The Citywide Creek Master Plan provides watershed specific recommendations for Santa Rosa Creek. This plan splits up the Santa Rosa Creek watershed into 8 reaches; reaches 3, 4 and 5 are within the Downtown Station Area Specific Plan and are summarized in this section. Currently, there are no trails along Matanzas Creek and the creek is lined with private property owners. However, if it is decided to add a trail, there is an opportunity to connect Downtown Santa Rosa to the
Figure 7.8 FEMA Flood Map and Nearby Creeks

Legend
- 100-year Flood Zone
- Creek
- Creek Restore
- SMART Rail
- Undercrossing

Source: City of Santa Rosa, 2018; Dyett & Bhatia, 2019
proposed Southeast Greenway, which is outside the study area near Montgomery High School and Hoen Avenue.

Santa Rosa Creek Reach 3: Farmers Lane to E Street (stretch east of City Hall)

Reach 3 is located on the western side of the study area and is recommended for preservation due to its value as fish and wildlife habitat. There is a proposed paved trail planned that would be located on the south/left bank of the creek between Memorial Hospital and Brookwood Avenue, west of Brookwood Avenue on the north/right bank of the creek, and the stretch between Memorial and E Street, the trail can be located on either side of the creek as an alternate. Additional trail undercrossings at Montgomery Drive and Brookwood Avenue are proposed as well.

Santa Rosa Creek Reach 4: E Street to Pierson Street (City Hall to SMART station area)

Reach 4 is the primary stretch within the Specific Plan area. The western stretch is culverted underneath City Hall, Sonoma Avenue, and the Federal Building at 777 Sonoma Ave, with the confluence of Matanzas and Santa Rosa creeks happening near D Street and Sonoma Avenue. The Prince Memorial Greenway Trail starts from Santa Rosa Avenue at Gateway Park and continues west and becomes Santa Rosa Creek Trail at West Third Street. The Citywide Creek Master Plan supports daylighting and restoring the culverted Santa Rosa Creek and Matanzas Creek through this area and potentially extending the Prince Memorial Greenway or adding a Creek Walk. Near the SMART station area, the Prince Memorial Greenway connects to the Joe Rodota Trail. The Joe Rodota Trail is proposed to be extended through to West Third Street and could be extended up north to connect to the SMART Trail system.

Santa Rosa Creek Reach 5: Pierson Street to Stony Point Road (stretch west of the SMART station area)

Reach 5 extends west of the SMART station within the Specific Plan area and runs along the northern edge of Imwalle Gardens. There is an existing Class 1 paved access road/trail along the north/right bank and an unpaved access road/trail along the south/left bank of the creek for the entire distance of this reach. While both trails go underneath Dutton Avenue, currently only the north/right bank trail connects up to the street. There are multiple entries proposed along this stretch which could be incorporated in the Specific Plan.

7.4 Key Findings and Planning Considerations

Geology and Soils

- In general, soils conditions are suitable for development and may be engineered in accordance with the California Building Code and other geotechnical requirements to provide sufficient foundation for structures.

- Any development along Santa Rosa Creek may be susceptible to significant site constraints or mitigation requirements, including liquefaction and slope stability. This is particularly important if the City Hall site is redeveloped.

- Like the rest of California, Downtown Santa Rosa is subject to earthquakes. While the planning areas is not directly on top of active earthquake fault zone, it is adjacent to the active Healdsburg-Rodgers Creek fault, located approximately 1.4 miles east of the Santa Rosa Downtown SMART station site and 3,500 feet east of the eastern edge of the planning area. As such, new buildings should be seismically reinforced and historic buildings could be examined and retrofitted.
Downtown Station Area Specific Plan Update
DRAFT Existing Conditions Report

Environmental Considerations

Due to the 2014 South Napa earthquake, additional fault segments which had not been previously recognized emerged along the southern portion of the West Napa fault, located 24 miles southeast of the planning area.

Hazardous Materials

- Often the most significant soil and groundwater contamination is associated with leaking underground storage tanks, especially older tanks placed in the 1970s and 1980s or earlier.

- Redevelopment of sites with older structures must consider the hazards associated with old lead-based paint and asbestos containing building materials that may be found in older structures and be handled as hazardous materials during demolition activities.

- The distribution of hazardous materials sites is controlled by zoning and proximity to transportation corridors. Downtown residential areas have relatively few or no sites, however, there are many hazardous materials sites along the railroad corridor near downtown Santa Rosa. There is also a concentration of sites east of Santa Rosa Plaza in the area between Mendocino Avenue and B Street. Due to the close proximity of sites there may be an area-wide contamination issue, such as contaminated groundwater, rather than constrained to individual sites.

- Sites that are already remediated or do not have any hazardous materials associated with the land should be prioritized to be developed first. Much of the larger industrial sites, such as the Maxwell Court site and the Sebastopol Road/Roberts Avenue sites will likely require significant remediation following closure of local businesses and subsequent reconstruction. The cost of remediation will depend upon the length and nature of work and would typically be borne by the property owner or responsible party as determined by the regulatory agency responsible for oversight. While hazards and hazardous materials would not preclude development of the project, the cost of remediation as part of site redevelopment would be a significant initial cost if the land purchase were for an “as-is” condition.

- Post development impacts will depend upon the nature of the new development. Redevelopment of industrial areas with environmentally engineered commercial and residential development would likely lower public risk to hazardous materials exposure.

Hydrology and Flooding

- Based on current FEMA flood mapping, there is minimal risk of flooding downtown; however, Sonoma Water is currently undertaking a study of additional flood control measures to be paired with creek bed naturalization and the removal of levees. It is anticipated that this initiative could expand the 100-year flood plain into the downtown planning area and FEMA flood maps will be updated to reflect new conditions in parallel with the Sonoma Water initiative.

- The Santa Rosa General Plan and the Santa Rosa Storm Water Management Plan include measures applicable to new development to manage the volume and velocity of stormwater and minimize flooding risk. Additionally, the City is currently preparing a storm drain master plan, which will identify and address currently and future needs in the area, accounting for existing and planned development in the planning area.