Environmental Assessment

Bennett Valley Road Affordable Housing

702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue

Santa Rosa

SONOMA COUNTY • CALIFORNIA 95404

Determinations and Compliance Findings

for HUD-assisted Projects

24 CFR Part 58

April 2021
Environmental Assessment
Determinations and Compliance Findings for HUD-assisted Projects
24 CFR Part 58

Project Identification: Bennett Valley Road Affordable Housing, 702 & 716
Bennett Valley Road and 921 & 927 Rutledge Avenue,
Santa Rosa, Sonoma County, California 95404

Responsible Entity: City of Santa Rosa

Preparer: AEM Consulting

Month/Year: April 2021
Table of Contents

Project Information ... 10
Project Location .. 11
Project Photographs .. 12
Parcel Map ... 13
Description of the Proposed Project .. 14
Statement of Purpose and Need for the Proposal ... 20
 Regional Outlook .. 20
 Local Perspective .. 21
Source: ... 21
Existing Conditions and Trends ... 22
 Existing Conditions ... 22
 Site Characteristics .. 22
 Trends ... 23
Funding Information ... 25
Estimated Total HUD Funded Amount: ... 25
Estimated Total Project Cost .. 25
Compliance with 24 CFR 50.4, 58.5, and 58.6 Laws and Authorities 26
STATUTES, EXECUTIVE ORDERS, AND REGULATIONS LISTED AT 24 CFR 50.4 and 58.6 ... 26
 Airport Hazards ... 26
 Coastal Barrier Resources ... 26
 Flood Insurance ... 26
STATUTES, EXECUTIVE ORDERS, AND REGULATIONS LISTED AT 24 CFR 50.4 & 58.5 ... 27
 Clean Air ... 27
 General Conformity .. 27
 Adverse Impacts under NEPA .. 28
 Air Quality and Existing Community Risk Impacts Assessment 28
 Introduction .. 28
 Toxic Air Contaminants .. 29
 Sensitive Receptors ... 29
 Significance Thresholds .. 30
Storm Water Treatment Control Measures ... 62
Temporary Measures .. 62
Pollution Prevention Measures .. 63
Project Impacts .. 63
Hazards and Nuisances including Site Safety and Noise ... 64
Site Safety .. 64
Seismic Hazards ... 64
2019 California Building Code Seismic Parameters .. 67
Ground Rupture .. 68
Ground Shaking .. 68
Liquefaction / Cyclic Softening .. 69
Liquefaction-Induced Ground Settlement .. 69
Surface Manifestation of Liquefaction .. 69
Lateral Spreading .. 70
Static Settlement .. 70
Supplemental Exploration and Liquefaction Analysis ... 70
Liquefaction Analysis ... 71
Conclusion .. 71
Noise ... 72
Project-generated Traffic ... 72
Construction Noise .. 72
Conclusion ... 73
Energy Consumption ... 73
SOCIOECONOMIC ... 73
Employment and Income Patterns .. 73
Demographic Character Changes, Displacement ... 74
COMMUNITY FACILITIES AND SERVICES .. 75
Educational and Cultural Facilities .. 75
Educational Facilities .. 75
Cultural Facilities .. 76
Commercial Facilities ... 76
Health Care and Social Services .. 76
Health Care ... 76
Social Services .. 77
Solid Waste Disposal / Recycling 77
Waste Water / Sanitary Sewers .. 78
Water Supply ... 79
Public Safety - Police, Fire and Emergency Medical 80
Police ... 80
Fire and Emergency Medical ... 81
Conclusion ... 82
Parks, Open Space and Recreation 82
Transportation and Accessibility 83
Transportation .. 83
Study Area ... 83
Nearby Local Streets and Freeways 84
Existing and Planned Bicycle Facilities 85
Public Transit .. 86
Operational Assessment .. 87
Vehicle Miles Traveled (VMT) ... 88
Automobile Parking ... 88
Bicycle Parking ... 88
Multimodal Site Access and Circulation 89
Conclusion ... 89
Accessibility .. 90
NATURAL FEATURES ... 90
Unique Natural Features, Water Resources 90
Vegetation, Wildlife .. 90
Other Factors ... 90
Additional Studies Performed: ... 91
Field Inspection .. 91
List of Sources, Agencies and Persons Consulted 91
List of Permits Obtained .. 91
Public Outreach ... 91
Cumulative Impact Analysis .. 91
Alternatives .. 91
No Action Alternative .. 91
Summary of Findings and Conclusions .. 91
Mitigation Measures and Conditions .. 92
Air Quality .. 92
Contamination & Hazardous Substances .. 93
Endangered Species .. 93
Geotechnical .. 94
Historic Preservation ... 94
Noise .. 96
Determination: .. 97
Bennett Valley Road Affordable Housing Source Documentation ... 98

Figures:

Figure 1 Aerial View .. 12
Figure 2 Assessor Parcel Map ... 13
Figure 3 Contextual Plan ... 14
Figure 4 Conceptual Landscape Plan ... 15
Figure 6 First Floor Plan ... 16
Figure 7 Elevations .. 17
Figure 8 Exterior Elevation ... 18
Figure 9 Rendering ... 19
Figure 10 Project Site and Onsite Residential Receptors, SH 12 and Santa Rosa Ave. Road Segments Evaluated, and Location of Maximum TAC Impacts ... 34
Figure 11 Units Recommending Mechanical Ventilation .. 56
Figure 12 Regional Faulting and Seismicity ... 65
Figure 13 Regional Faulting and Seismicity – Detail .. 65
Figure 14 Seismic Hazards Zone Map .. 67
Figure 15 Total Computed Potential Liquefaction-Induced Settlement .. 71
Figure 16 Traffic Study Area .. 84
Figure 17 Sonoma County Airport Safety Compatibility Zones ... 105
Figure 18 Petaluma Airport Safety Compatibility Zones .. 106

Maps:

Map 1 Region .. 11
Map 2 Detail .. 11
Map 3 Area of Potential effects ... 49
Tables:

Table 1 Sonoma County Housing Needs Allocation, 2014 to 2022 .. 21
Table 2 Units Issued Building Permits by Income Category ... 21
Table 3 BAAQMD CEQA Thresholds of Significance ... 30
Table 4 Construction Period Emissions ... 32
Table 5 Operational Period Emissions ... 33
Table 6 Impacts from Combined Sources to Project Site Receptors .. 34
Table 7 Nearby Known Faults Capable of Producing Significant Ground Shaking at the Site 64
Table 8 2019 CBC Seismic Design Parameters, Latitude: 38.4302632, Longitude: -122.70973458 68
Table 9 Vehicle Trip Generation .. 72
Table 10 Vehicle Trip Generation Rates ... 87
Table 11 Affordable Multifamily Housing Parking Standards .. 88

Appendices:

Appendix A – Project Description
Appendix B – Airports
Appendix C – Floodplains, Wetlands and Endangered Species
Appendix D – Air Quality and Greenhouse Gas Emissions
Appendix E – Contamination and Toxic Substances
Appendix F – Historic Preservation
Appendix G – Noise and Traffic
Appendix H – Soils and Miscellaneous
Environmental Assessment
Determinations and Compliance Findings for HUD-assisted Projects
24 CFR Part 58

Project Information

Project Name: Bennett Valley Road Affordable Housing
City of Santa Rosa
Housing and Community Services
90 Santa Rosa Avenue
Santa Rosa, CA 95404

Grant Recipient (if different than Responsible Entity):

State/Local Identifier:

Preparer: Cinnamon Crake, President
Bay Desert, Inc. dba AEM Consulting

Certifying Officer Name and Title: Clare Hartman, Deputy Director
Planning and Economic Development

AEM Consulting
422 Larkfield Center #104
Santa Rosa, CA 95403
(707) 523-3710
crake@aemconsulting.net

Consultant (if applicable):
Megan Basinger
Housing and Community Services Manager
(707) 543-3303
mbasinger@srcity.org

Direct Comments to:

Project Location:
702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404 (APNs 009-333-014-000, -009-000, 038-151-004-000, -011-000, respectively)
Project Location

Bennett Valley Road Affordable Housing
702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue
Santa Rosa, CA 95404

Map 1 Region

Map 2 Detail
Project Photographs

Bennett Valley Road Affordable Housing
702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue
Santa Rosa, CA 95404

Figure 1 Aerial View
Parcel Map

Bennett Valley Road Affordable Housing
702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue
Santa Rosa, CA 95404

Figure 2 Assessor Parcel Map
Description of the Proposed Project [24 CFR 50.12 & 58.32; 40 CFR 1508.25]:

Bennett Valley Road Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404 (APNs 009-333-014-000, -009-000, 038-151-004-000, -011-000, respectively):

Freebird Development proposes to develop the Bennett Valley Road Affordable Housing project on a 1.93-acre site composed of four parcels, with address 702 Bennett Valley Road (APN 009-333-014-000), 716 Bennett Valley Road (APN 009-333-009-000), 921 Rutledge Avenue (APN 038-151-004-000), and 927 Rutledge Avenue (APN 038-151-011-000), in Santa Rosa, Sonoma County, California 95404. The project will demolish existing improvements (buildings constructed in 1925 and parking lot), to construct a new, four-story building with 62 affordable apartments. The unit mix is 19 studios, 19 one-bedroom units, eight (8) two-bedroom units, and 16 three-bedroom units, for a total of 62 units. One unit will be reserved for an on-site manager. A total of 52 parking spaces will be provided on-site, in addition to 32 long-term bicycle parking spaces, six (6) short-term bicycle parking spaces, and one (1) electric vehicle (EV) charging station. Amenities include a community room, office suite, laundry facilities, and residential storage. Common outdoor space will be provided with fenced courtyard and children’s play area. The project will provide affordable housing to moderate and low-income families and formerly at-risk residents.

The total project cost is estimated to be $40,000,000. See Appendix A for plan set. Source: (1)
Figure 4 Conceptual Landscape Plan
Figure 5 First Floor Plan
Figure 6 Elevations
Figure 7 Exterior Elevation

Environmental Assessment
704 Bennett Valley Road, Santa Rosa, CA 95404
April 2021
Figure 8 Rendering
Statement of Purpose and Need for the Proposal [40 CFR 1508.9(b)]:

The purpose of the proposal is to increase the number of affordable housing units in the City of Santa Rosa and Sonoma County as a whole.

Regional Outlook

The San Francisco Bay Area (Bay Area) region has a population of approximately 7.2 million people. The Bay Area is the world’s 21st-largest economy. The region’s population is projected to swell to 9 million people by 2040. About one-fifth of the Bay Area’s total population lives in areas with large numbers of low-income and minority populations. Source: (2)

The Association of Bay Area Governments, in conjunction with the Metropolitan Transportation Commission and representatives from each of the nine Bay Area counties and cities, has drafted a strategy for a sustainable region named Plan Bay Area. Plan Bay Area grew out of California Senate Bill SB 375 “The California Sustainable Communities and Climate Protection Act of 2008” which requires the Bay Area to reduce greenhouse gas emissions from cars and light trucks. The law requires that the Sustainable Communities Strategy promote compact, mixed-use commercial and residential development. To meet the goals of SB 375, Plan Bay Area directs more future development in areas that are or will be walkable and bike-able and close to public transit, jobs, schools, parks, recreation and other amenities. The law synchronizes the regional housing needs allocation process with the regional transportation planning process and streamlines the California Environmental Quality Act (CEQA) process for housing and mixed-use projects that are consistent with the Sustainable Communities Strategy and are in close proximity to public transportation. Local governments have identified Priority Development Areas where new development will support the day-to-day needs of residents and workers in a pedestrian-friendly environment served by transit. Priority Development Areas (PDAs) were established to address housing needs in infill communities and advance focused employment growth. The project site is located within the Downtown Station Area PDA.

By 2040 the Bay Area is projected to add 2.1 million people, an increase of 30% or roughly 1% per year. The number of jobs is expected to grow by 1.1 million between 2010 and 2040, an increase of 33%, which is a slower rate of job growth than previous forecasts. During this same time period, the number of households is expected to increase by 27% to 700,000 and the number of housing units is expected to increase by 24% to 660,000. Single-family homes represent the majority of housing production in recent decades, but recent trends suggest that cities once again are becoming centers of population growth. Construction of multifamily housing in urban locations in the Bay Area increased from an average of 35% of total housing construction in the 1990s to nearly 50% in the 2000s. In 2010 it represented 65% of all housing construction. Demand for multifamily housing is projected to increase in developed areas near transit, shops and services.

The economy in the Bay Area is still recovering from the recession of 2007-2009, which has resulted in uneven job growth throughout the region, increased income disparity, and high foreclosure rates. At the same time, housing costs have risen for renters and, to a lesser degree, for home buyers close to the region’s job centers. Bay Area communities face these challenges at a time when there are fewer public resources available than in past decades for investments in infrastructure, public transit, affordable housing, schools and parks. Source: (2)
Local Perspective

According to the 2010 U.S. Census, Sonoma County had a population of 483,880. Sonoma County’s population is expected to grow 24% to 598,460 in year 2040. Sonoma County lies north of San Francisco and Marin County, in the North Bay of the San Francisco Bay Area. According to the Association of Bay Area Governments (ABAG), Sonoma County Housing Needs Allocation 2014 to 2022, the City of Santa Rosa should add 4,662 new units by 2022 in order to meet the needs for housing. Source: (3) (4)

Table 1 Sonoma County Housing Needs Allocation, 2014 to 2022

<table>
<thead>
<tr>
<th></th>
<th>Very Low 0-50%</th>
<th>Low 51-80%</th>
<th>Moderate 81-120%</th>
<th>Above Moderate 12%+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloverdale</td>
<td>39</td>
<td>29</td>
<td>31</td>
<td>112</td>
<td>211</td>
</tr>
<tr>
<td>Cotati</td>
<td>35</td>
<td>18</td>
<td>18</td>
<td>66</td>
<td>137</td>
</tr>
<tr>
<td>Healdsburg</td>
<td>31</td>
<td>24</td>
<td>26</td>
<td>76</td>
<td>157</td>
</tr>
<tr>
<td>Petaluma</td>
<td>199</td>
<td>103</td>
<td>121</td>
<td>322</td>
<td>745</td>
</tr>
<tr>
<td>Rohnert Park</td>
<td>181</td>
<td>107</td>
<td>127</td>
<td>484</td>
<td>899</td>
</tr>
<tr>
<td>Santa Rosa</td>
<td>947</td>
<td>581</td>
<td>759</td>
<td>2,375</td>
<td>4,662</td>
</tr>
<tr>
<td>Sebastopol</td>
<td>22</td>
<td>17</td>
<td>19</td>
<td>62</td>
<td>120</td>
</tr>
<tr>
<td>Sonoma</td>
<td>24</td>
<td>23</td>
<td>27</td>
<td>63</td>
<td>137</td>
</tr>
<tr>
<td>Windsor</td>
<td>120</td>
<td>65</td>
<td>67</td>
<td>188</td>
<td>440</td>
</tr>
<tr>
<td>Unincorporated</td>
<td>220</td>
<td>127</td>
<td>160</td>
<td>429</td>
<td>936</td>
</tr>
<tr>
<td>Sonoma County Total</td>
<td>1,818</td>
<td>1,094</td>
<td>1,355</td>
<td>4,177</td>
<td>8,444</td>
</tr>
</tbody>
</table>

As shown below, the Santa Rosa 2018 General Plan Annual Report shows that through 2018, Santa Rosa had satisfied some of its housing need.

Table 2 Units Issued Building Permits by Income Category

<table>
<thead>
<tr>
<th>Income Category</th>
<th>Extremely Low</th>
<th>Very Low</th>
<th>Low 51-80%</th>
<th>Moderate 81-120%</th>
<th>Above Moderate 12%+</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABAG RHNA Objectives</td>
<td>520</td>
<td>521</td>
<td>671</td>
<td>759</td>
<td>2,612</td>
<td>5,083</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>8</td>
<td>94</td>
<td>126</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>16</td>
<td>246</td>
<td>283</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>327</td>
<td>350</td>
</tr>
<tr>
<td>County Issued Permits 2015-2018*</td>
<td>24</td>
<td>35</td>
<td>53</td>
<td>2</td>
<td>135</td>
<td>253</td>
</tr>
<tr>
<td>2018</td>
<td>24</td>
<td>17</td>
<td>12</td>
<td>77**</td>
<td>301</td>
<td>431</td>
</tr>
<tr>
<td>Total Issued (2015-2018)</td>
<td>48</td>
<td>53</td>
<td>89</td>
<td>126</td>
<td>1,103</td>
<td>1,423</td>
</tr>
<tr>
<td>Remaining Need</td>
<td>472</td>
<td>468</td>
<td>582</td>
<td>633</td>
<td>1,509</td>
<td>3,660</td>
</tr>
</tbody>
</table>

Source: (5)
Existing Conditions and Trends [24 CFR 58.40(a)]:

Existing Conditions

Sonoma County is a county in the U.S. state of California. As of the 2010 United States Census, its population was 483,878. Its county seat and largest city is Santa Rosa. It is to the north of Marin County and the south of Mendocino County. It is west of Napa County and Lake County.

Sonoma County comprises the Santa Rosa, CA Metropolitan Statistical Area, which is also included in the San Jose-San Francisco-Oakland, CA Combined Statistical Area. It is the northwesternmost county in the nine-county San Francisco Bay Area region.

Sonoma is the southwestern county and largest producer of California’s Wine Country region, which also includes Napa, Mendocino, and Lake counties. It possesses thirteen approved American Viticultural Areas and over 250 wineries. In 2002, Sonoma County ranked as the 32nd county in the United States in agricultural production. As early as 1920, Sonoma County was ranked as the eighth most agriculturally productive US county and a leading producer of hops, grapes, prunes, apples, and dairy and poultry products, largely due to the extent of available, fertile agricultural land in addition to the abundance of high quality irrigation water. More than 7.4 million tourists visit each year, spending more than $1 billion in 2006. Sonoma County is the home of Sonoma State University and Santa Rosa Junior College.

Sonoma County is home to several Native American tribes. By the 1830s, European settlement had set a new direction that would prove to radically alter the course of land use and resource management of this region. Sonoma County has rich agricultural land, albeit largely divided between two nearly monocultural uses as of 2007: grapes and pasturage. The voters have twice approved open space initiatives that have provided funding for public acquisition of natural areas, preserving forested areas, coastal habitat, and other open space.

Santa Rosa (lit. Spanish for "Saint Rose") is a city in and the county seat of Sonoma County, in California’s Wine Country. Its estimated 2016 population was 175,155. Santa Rosa is the largest city in California’s Redwood Empire, Wine Country and the North Bay; the fifth most populous city in the San Francisco Bay Area after San Jose, San Francisco, Oakland, and Fremont; and the 28th most populous city in California.

The project site is located in the south eastern portion of Santa Rosa, near the intersection of Highway 101 and Highway 12, east of Santa Rosa Avenue, in the South Park neighborhood.

Site Characteristics

The project site is comprised of four contiguous parcels at the corner of Bennett Valley Road and Rutledge Road, Santa Rosa, California. The site is 1.93 acres in size with addresses 702 and 716 Bennett Valley Road and 921 and 927 Rutledge Avenue (APNs 009-333-014-000, -009-000, 038-151-004-000, -011-000, respectively). The entire site is improved and covered in impervious surfaces (buildings and asphalt paving). The subject property is owned by the City of Santa Rosa and contains two buildings – an original main school building of approximately 7,762 square feet and dedicated in 1930, and to the west is a small, 1920s California Craftsmen residence, of approximately 1,400 square feet. Both have been used for various community services over the recent decades, but were used entirely for school functions preceding the change in use to a Senior Center. The 1920s building appears to have been converted for use as an Art Start program for children. The Santa Rosa Senior Center has not been in operation for some time. The remainder of the site asphalt paved parking area.
The existing improvements will be demolished to construct the project.

Trends

The trends in this section are from *The Need for New Housing*, posted to the Count of Sonoma website (Source (6)).

Like many other counties in California, Sonoma County is known for its high cost of living and lack of affordable, available housing. Building new market-rate and affordable housing countywide has become necessary as the County has not kept up with housing demand over the last half decade. Proper location is an important consideration for new housing, and there has been a long-standing countywide concern to avoid sprawl with new development. This has led to the creation of Urban Growth Boundaries and the identification of Priority Development Areas (PDAs) throughout Sonoma County where most new housing would occur.

The housing shortage in Sonoma County was already critical before the wildfires of October 2017, and has become unsustainable in the aftermath. More housing was lost in one night than had been created in the County over the seven years prior. The disaster illuminated the vulnerability of people across all socio-economic levels, as well as the consequences of a lack of housing on individual, social, and economic recovery.

The Sonoma Complex Fires exacerbated an already dire housing crisis: On October 9, 2017, the most destructive wildfires in California history began in Napa County and quickly spread to Sonoma County and into the City of Santa Rosa. After burning for over three weeks, the fires ultimately destroyed 5,283 housing units countywide, (including approximately 3,000 residential units in Santa Rosa) and over 2,200 residential units and another approximate 1,000 residential accessory structures in the unincorporated County. The fires impacted thousands of community members, leaving many homeless, struggling to recover and rebuild.

Before the fires, many of those seeking new housing could neither find nor afford a decent place to live. The County already had very low vacancy rates—1.8% for rentals and 1% for homeowners. A housing market study released April 2018 using pre-fire data estimated that Sonoma County needed 14,634 affordable rental units to meet demand, that more than half of Sonoma County renters pay more than what is affordable for housing, and that nearly a third were “severely rent burdened,” meaning they paid more than 50% of their income on rent.

After the fires the cost to buy a home in Sonoma County became increasingly out of reach for many potential homebuyers: the first quarter 2018 median home value was $681,333, up from $604,380 in the previous first quarter. Rents for surviving units rose substantially as the County experienced a simultaneous plunge in supply and influx of new demand as newly displaced residents scrambled to find vacant and affordable units. The fires displaced approximately 2,200 renters, but also created a secondary wave of displacement through disaster-related market pressures. According to the survey of people who are unstably housed completed as part of the 2018 Homeless Count, at least 2,363 people were secondarily displaced by the fires—either by owners returning to their rental properties when their home burned or because of rent increases since the fires. Of those who became unstably housed following the fires, 43% were over the age of 55. Of the 16,666 total FEMA registrants in Sonoma County, 4,786 or 29% were 65 or older. Many older people are on fixed incomes and will struggle financially rebuild their homes or to find housing again in the current rental market.

The housing shortage following the October 2017 fires also contributed to an increase in the number of people experiencing homelessness. The 2020 Homeless Count showed a decrease of 7% between 2019 and 2020 to 2,745 homeless individuals.
It increasingly difficult to attract or retain workers due to high housing costs. The low unemployment rate, 2.8%, is, on the one hand a mark of success, but, on the other hand, a challenge to having enough people who can build homes or who are available to work in our communities.

A workforce housing study found that 8,143 new housing units are needed by 2020 to keep up with projected household employment through that date. This same study noted a need for 12,631 additional new housing units to address existing overcrowding in six percent of the County’s total housing units. These two figures represent a total of 20,774 units needed by 2020 in addition to the 5,300 units to be rebuilt after the fires. These figures do not take into account the results of the post-fires homeless count and precariously housed survey.

Source: (6)

These trends are likely to continue in the absence of the project. The project will help to stem the trends outlined above by providing affordable housing units targeted to the specific needs of low-income seniors.
Funding Information

<table>
<thead>
<tr>
<th>Grant Number</th>
<th>HUD Program</th>
<th>Funding Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated Total HUD Funded Amount:

Estimated Total Project Cost (HUD and non-HUD funds) [24 CFR 58.32(d)]: $40,000,000
Compliance with 24 CFR 50.4, 58.5, and 58.6 Laws and Authorities

Record below the compliance or conformance determinations for each statute, executive order, or regulation. Provide credible, traceable, and supportive source documentation for each authority. Where applicable, complete the necessary reviews or consultations and obtain or note applicable permits of approvals. Clearly note citations, dates/names/titles of contacts, and page references. Attach additional documentation as appropriate.

<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUTES, EXECUTIVE ORDERS, AND REGULATIONS LISTED AT 24 CFR 50.4 and 58.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport Hazards</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>24 CFR Part 51 Subpart D</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Coastal Barrier Resources</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Coastal Barrier Resources Act, as amended by the Coastal Barrier Improvement Act of 1990 [16 USC 3501]</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Flood Insurance</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Flood Disaster Protection Act of 1973 and National Flood Insurance Reform Act of 1994 [42 USC 4001-4128 and 42 USC 5154a]</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>flood hazard designation is depicted on FIRM Map Number 06097C0737F, effective October 16, 2012.</td>
</tr>
<tr>
<td>Flood insurance is not required.</td>
</tr>
<tr>
<td>Source Documentation: (12) (Appendix C)</td>
</tr>
</tbody>
</table>

STATUTES, EXECUTIVE ORDERS, AND REGULATIONS LISTED AT 24 CFR 50.4 & 58.5

<table>
<thead>
<tr>
<th>Clean Air</th>
<th>General Conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Air Act, as amended, particularly section 176(c) & (d); 40 CFR Parts 6, 51, 93</td>
<td>Yes No</td>
</tr>
</tbody>
</table>

Clean Air

The 1990 Amendment to Clean Air Act (CAA) Section 176 requires the federal EPA to promulgate rules to ensure that federal actions conform to the appropriate SIP. These rules, known as the General Conformity Rule (40 C.F.R. Parts 51.850–51.860 and 93.150–93.160), require any federal agency responsible for an action in a federal nonattainment/maintenance area to demonstrate conformity to the applicable State Implementation Plan (SIP), by either determining that the action is exempt from the General Conformity Rule requirements or subject to a formal conformity determination.

Actions would be exempt, and thus conform to the SIP, if an applicability analysis shows that the total direct and indirect emissions of nonattainment/maintenance pollutants from project construction and operation activities would be less than specified emission rate thresholds, known as de minimis levels (40 C.F.R. Section 93.153, Applicability). If not determined exempt, an air quality conformity analysis would be required to determine conformity.

The General Conformity Rule is applicable only for project criteria pollutants and their precursors for which an area is designated nonattainment or that is covered by a maintenance plan. The proposed action is located within the Bay Area Air Quality Management District (BAAQMD) portion of Sonoma County, which is a federal nonattainment area for O₃ (marginal), and PM₂.₅ (moderate). Therefore, the General Conformity Rule is applicable to project emissions of O₃ and PM₂.₅. The applicable de minimis
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 tons annually of VOC and NOX and 100 tons annually for PM2.5.</td>
<td></td>
</tr>
</tbody>
</table>

Adverse Impacts under NEPA

A NEPA impact analysis differs from the General Conformity analysis in that any pollutant emissions recommended to be considered by the local agency are evaluated as well as nonattainment pollutant emissions. As the proposed action is located entirely within the BAAQMD portion of Sonoma County, the appropriate criteria are those issued by the BAAQMD.

Air Quality and Existing Community Risk Impacts Assessment

Illingworth & Rodkin, Inc. prepared an *Air Quality & Existing Community Risk Impacts Assessment* for the Bennett Valley Road Affordable Housing residential development project. The report was completed in December 2020. A summary follows and the report is attached.

Introduction

The purpose of the report was to address air quality impacts and compute a community risk assessment of existing toxic air containment (TAC) sources upon the new on-site sensitive receptors associated with a new residential development at 704 Bennett Valley Road in Santa Rosa, California. The air quality impacts would be associated with the demolition of the existing uses, construction of new building and infrastructure, and operation of the project. Air pollutant emissions associated with the construction and operation of the project were predicted using appropriate computer models. In addition, the potential community risk impact to new sensitive receptors from existing toxic air contaminant (TAC) sources were evaluated. The analysis addresses those issues following the guidance provided by the Bay Area Air Quality Management District (BAAQMD). In addition, the project emissions are assessed against U.S. Department of Housing and Urban Development (HUD) thresholds for projects.
Toxic Air Contaminants

TACs are a broad class of compounds known to cause morbidity or mortality (usually because they cause cancer) and include, but are not limited to, the criteria air pollutants. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about three-quarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complicated scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State’s Proposition 65 or under the Federal Hazardous Air Pollutants programs. The most recent Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines were published in February of 2015.1

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, the elderly over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, infants and children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site are the residents at the Burbank Manor assisted living facility on the other side of Highway 12, to the northeast of the site. There are also residences adjacent to the east and south.
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

Are formal compliance steps or mitigation required?

Compliance determinations

sides of the site that have the potential of being sensitive receptors. This project would also introduce new sensitive receptors (i.e., new residents).

Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA and these significance thresholds were contained in the District’s 2011 CEQA Air Quality Guidelines. These thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA. The thresholds were challenged through a series of court challenges and were mostly upheld. BAAQMD updated the CEQA Air Quality Guidelines in 2017 to include the latest significance thresholds that were used in this analysis are summarized in the table below.

Table 3 BAAQMD CEQA Thresholds of Significance

<table>
<thead>
<tr>
<th>Criteria Air Pollutant</th>
<th>Construction Thresholds</th>
<th>Operational Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Daily Emissions (lbs./day)</td>
<td>Average Daily Emissions (lbs./day)</td>
</tr>
<tr>
<td>ROG</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>NOx</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>PM2.5</td>
<td>82 (Exhaust)</td>
<td>82</td>
</tr>
<tr>
<td>PM2.5</td>
<td>54 (Exhaust)</td>
<td>54</td>
</tr>
<tr>
<td>CO</td>
<td>Not Applicable</td>
<td>9.0 ppm (8-hour average) or 20.0 ppm (1-hour average)</td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td>Construction Dust Ordinance or other Best Management Practices</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Health Risks and Hazards

<table>
<thead>
<tr>
<th>Sources Within 1,000-foot Zone of Influence</th>
<th>Combined Sources (Cumulative from all sources within 1,000-foot zone of influence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess Cancer Risk</td>
<td>>10.0 per one million</td>
</tr>
<tr>
<td>Hazard Index</td>
<td>>1.0</td>
</tr>
<tr>
<td>Incremental annual PM2.5</td>
<td>>0.3 μg/m³</td>
</tr>
</tbody>
</table>

Note: ROG = reactive organic gases, NOx = nitrogen oxides, PM2.5 = coarse particulate matter or particulates with an aerodynamic diameter of 10 micrometers (μm) or less, PM2.5 = fine particulate matter or particulates with an aerodynamic diameter of 2.5 μm or less.

1 See Appendix D for a detailed description of the community risk modeling methodology used in the assessment.
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The project area is located within the San Francisco Bay Area Air Basin, which is designated as a nonattainment area for the federal 8-hour ozone standard and the federal PM${2.5}$ standard. The air basin is designated as a maintenance area with respect to the federal carbon monoxide (CO) standards. In keeping with the General Conformity Rule process, the assessment applies the appropriate de minimis thresholds of the Rule as they apply to the San Francisco Bay Area Air Basin for ozone precursors, PM${2.5}$, and CO. The General Conformity de minimis thresholds for these pollutants are 100 tons per year for each pollutant or ozone precursor pollutant (i.e., NOx and ROG).</td>
</tr>
</tbody>
</table>

Construction Period Emissions

The California Emissions Estimator Model (CalEEMod) Version 2016.3.2 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size, and anticipated construction schedule were input to CalEEMod. The CARB EMission FACTors 2017 (EMFAC2017) model was used to predict emissions from construction traffic, which includes worker travel, vendor trucks, and haul trucks.

CalEEMod computes annual emissions for construction that are based on the project type, size and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario, including equipment list and schedule, were based on default construction information provided with CalEEMod for this project type. Construction would produce traffic in the form of worker trips and truck traffic. CalEEMod provides estimates of truck traffic emissions during construction based on a daily estimate of worker and vendor trips for each applicable construction phase. The latest version of the CalEEMod model is based on the older version of the CARB EMFAC2014 motor vehicle emission factor.
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

Are formal compliance steps or mitigation required?

Compliance determinations

model. This model has been superseded by the EMFAC2017 model and CalEEMod has not been updated to include EMFAC2017.

Annual emissions were predicted using CalEEMod. Average daily emissions were computed by dividing the total construction emissions by the number of construction days (269 construction workdays). The table below shows average daily construction emissions of ROG, NOX, PM_{10} exhaust, PM_{2.5} exhaust, and CO during construction of the project. As indicated below, predicted construction period emissions would not exceed the applicable BAAQMD significance thresholds or the General Conformity (i.e., NEPA) de minimis thresholds.

Table 4 Construction Period Emissions

<table>
<thead>
<tr>
<th>Scenario</th>
<th>ROG</th>
<th>NOx</th>
<th>PM_{10} Exhaust</th>
<th>PM_{2.5} Exhaust</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total construction emissions (tons)</td>
<td>0.8 tons</td>
<td>2.0 tons</td>
<td>0.1 tons</td>
<td>0.1 tons</td>
<td>1.8 tons</td>
</tr>
<tr>
<td>NEPA De Minima Thresholds (tons/year)</td>
<td>100 tons</td>
<td>100 tons</td>
<td>100 tons</td>
<td>100 tons</td>
<td>100 tons</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Average daily emissions (pounds)</td>
<td>5.7 lbs./day</td>
<td>15.2 lbs./day</td>
<td>0.8 lbs./day</td>
<td>0.7 lbs./day</td>
<td>13.7 lbs./day</td>
</tr>
<tr>
<td>BAAQMD Thresholds (pounds per day)</td>
<td>54 lbs./day</td>
<td>54 lbs./day</td>
<td>54 lbs./day</td>
<td>54 lbs./day</td>
<td>NA</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
</tbody>
</table>

1Assumes 269 workdays. 2 BAAQMD does not have CO emissions thresholds.

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM_{10} and PM_{2.5}. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less-than-significant if best management practices are implemented to reduce these emissions.

Operational Period Emissions

Operational air emissions from the project would be generated primarily from autos driven by future residents and employees.
Evaporative emissions from architectural coatings and maintenance products (classified as consumer products) are typical emissions from these types of uses. CalEEMod was used to estimate emissions from operation of the proposed project assuming full build-out.

Annual emissions were predicted using CalEEMod and daily emissions were estimating assuming 365 days of operation. The table below shows average daily emissions of ROG, NOX, total PM$_{10}$, total PM$_{2.5}$, and CO during operation of the project. The operational period emissions would not exceed the BAAQMD significance thresholds or the NEPA *de minimis* thresholds.

Table 5 Operational Period Emissions

<table>
<thead>
<tr>
<th>Scenario</th>
<th>ROG</th>
<th>NOX</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023 Project Operational Emissions (tou/year)</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>1.9</td>
</tr>
<tr>
<td>BAAQMD Thresholds (tons/year)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>NEPA De Minimis Thresholds (tons/year)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2023 Project Operational Emissions (lbs/day)1</td>
<td>2.9</td>
<td>1.7</td>
<td>1.6</td>
<td>0.5</td>
<td>10.4</td>
</tr>
<tr>
<td>BAAQMD Thresholds (lbs/day)</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>N/A</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1 Assumes 365-day operation.

2 BAAQMD CO thresholds only apply to projects that have the potential to cause or significantly contribute to a localized violation of the NAAQS or CAAQS. This project will not produce enough CO to cause or contribute to a localized violation.

Exposure of Project Residents to Existing TACs Sources

A health risk assessment was completed to assess the impact that existing TAC sources would have on the new proposed sensitive receptors (residents) introduced by the project. The assessment considered the substantial sources of TACs that would affect sensitive receptors located within 1,000 feet of the project site (i.e., influence area). These sources can include railroads, freeways or highways, busy surface streets, and stationary sources identified by BAAQMD. A review of the project area identified two substantial sources of existing TACs and localized air pollutants in the vicinity of the project were identified: State Highway 12 and Santa Rosa Avenue. Average daily traffic (ADT) traffic on State Highway 12 (SH 12) and Santa Rosa Avenue are over 10,000 vehicles. All other roadways within the area have an ADT that is less than 10,000 vehicles. No stationary sources were identified.
Environme
ntal Assessment

704 Bennett Valley Road, Santa Rosa, CA 95404
April 2021

Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

Are formal compliance steps or mitigation required?

Compliance determinations

within the 1,000-foot influence area of the project. The figure below shows sources within 1,000 feet that affect the project site.

Figure 9 Project Site and Onsite Residential Receptors, SH 12 and Santa Rosa Ave. Road Segments Evaluated, and Location of Maximum TAC Impacts

Community risk impacts are addressed by predicting increased lifetime cancer risk, the increase in annual PM$_{2.5}$ concentrations, and computing the Hazard Index (HI) for non-cancer health risks upon the project site’s maximumly effected individual(s) (i.e., MEI). This involved estimating TAC and PM$_{2.5}$ emissions, dispersion modeling and cancer risk computations. Community risk impacts from the TAC sources upon the MEI are reported in the table below.

Table 6 Impacts from Combined Sources to Project Site Receptors

<table>
<thead>
<tr>
<th>Source</th>
<th>Maximum Cancer Risk (per million)</th>
<th>Maximum Annual PM$_{2.5}$ (µg/m³)</th>
<th>Maximum Hazard Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Highway 12*</td>
<td>5.7</td>
<td>0.14</td>
<td><0.01</td>
</tr>
<tr>
<td>Santa Rosa Avenue*</td>
<td>2.1</td>
<td>0.14</td>
<td><0.01</td>
</tr>
<tr>
<td>BAAQMD Single-Source Threshold</td>
<td>>16.0</td>
<td>>6.3</td>
<td>>1.0</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cumulative Total</td>
<td>7.8</td>
<td>0.49</td>
<td><0.02</td>
</tr>
<tr>
<td>BAAQMD Cumulative Source Threshold</td>
<td>>100</td>
<td>>6.8</td>
<td>>10.0</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
*Receptor on 1st floor
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The TAC sources above are compared against the BAAQMD single-source threshold and then combined and compared against the BAAQMD cumulative-source threshold. As shown, neither cancer risk, annual PM${2.5}$ concentrations, or HI from the identified nearby TAC sources exceed their single-source or cumulative-source thresholds. Therefore, filtration in ventilation systems at the project site would not be needed to reduce diesel particulate matter (DPM) and PM${2.5}$ concentrations to below thresholds of significance.</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

Future residents will not be exposed to excess cancer risks that require mitigation.

Current BAAQMD Best Management Practices to control particulate matter during construction is required.

Mitigation Required: AQ1
Source Documentation: (13) (Appendix D)

Coastal Zone Management
Coastal Zone Management Act, sections 307(c) & (d)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

The City of Santa Rosa is located in Sonoma County. Western Sonoma County is adjacent to the California coastline. The project is subject to requirements of the Sonoma County Local Coastal Plan. Several areas of Sonoma County are identified for low income housing incentives along the coastal zone. The project, as proposed, is within the urban boundaries of the City of Santa Rosa, over 19 miles from the Pacific Ocean; therefore, a Coastal Development Permit is not required.

A Coastal Development Permit is not required.

Source Documentation: (7) (8) (14)

Contamination and Toxic Substances
24 CFR Part 50.3(i) & 58.5(i)(2)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

In August 2020, a Phase I Environmental Site Assessment was conducted for the proposed project site by Path Forward Environmental Engineering & Geology. A summary follows and the entire report can be found in Appendix E.
<table>
<thead>
<tr>
<th>Phase I Environmental Site Assessment</th>
</tr>
</thead>
</table>

The 1.92-acre subject property consists of four contiguous parcels. A large vacant building formerly used as an elementary school with associated detached outbuildings including a commercial kitchen and asphalt paved parking areas are located on the 702 Bennett Valley Road and 921 and 927 Rutledge Avenue parcels. The 716 Bennett Valley Road parcel is developed with wood-framed structures formerly used as a residence, detached wooden storage sheds, and a concrete block building. Improvements also include trash enclosures on the southern portion of the subject property, paved surface parking and landscaping.

Path Forward identified obvious subject property uses from the present back to 1924, at which time the northern half of the subject property was developed with a public school. The school operated on the subject property until the 1970s. By the early 1940s, a single-family residence and garage was present on the 716 Bennett Valley Road parcel. By 1959, a new structure was present on the southern portion of the parcel. City of Santa Rosa Building Department records the 1969 Sanborn map identify this building as an auto repair facility. Auto repair operations reportedly continued until the 1970s. The school buildings were used as the Santa Rosa Senior Center until 2018. The 716 Bennett Valley Road parcel was most recently used by Santa Rosa’s Art Start program. The school buildings have remained vacant and unused since 2018.

The ESA revealed no evidence of recognized environmental conditions (RECs), historical recognized environmental conditions (HRECs), or controlled recognized environmental conditions (CRECs), as defined in Section 1.1, in connection with the subject property, except the following:

- A school building was constructed on the 702 Bennett Valley Road parcel in the 1920s. During the site visit, a subterranean boiler room in the schoolhouse was inspected. A fill port was located on the last step leading to the boiler room. Several capped pipes were located inside the boiler room. The fill port and pipes are
Compliance Factors:

<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are formal compliance steps or mitigation required?</td>
<td>indicative of a potential historical underground storage tank (UST). No records related to a UST or UST removal were found during this assessment. The presence of a potential historical UST is considered a REC.</td>
<td></td>
</tr>
<tr>
<td>• An auto repair facility was constructed on the south side of the 716 Bennett Valley Road parcel in the late 1950s. The concrete block building was sealed several years ago due to vandalism and Path Forward was not able to access the interior of the building to inspect for evidence of in-ground hydraulic lifts, USTs, staining, and hazardous materials use and storage. Given the unknown operations and status of the former auto repair facility, the former auto repair building is considered a REC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subsurface Site Investigation

Path Forward Partners, Inc. (Path Forward) prepared a *Subsurface Site Investigation Report* for the property located at 702 and 716 Bennett Valley Road and 921 and 927 Rutledge Avenue in Santa Rosa, California. The purpose was to evaluate Site conditions to assist in evaluating redevelopment costs.

Proposed redevelopment of the subject property includes demolition of all or some of the vacant buildings in order to develop affordable housing which will consist of seven housing units, an office, various maintenance rooms, a community room, rooms for amenities such as laundry, and a paved parking lot.

Previous Environmental Investigations and Remedial Activities

In 2019, EBA Engineering (EBA) conducted a Phase I ESA during which no recognized environmental conditions (RECs) were identified associated with the Site (EBA 2019). EBA noted that the interior of the building at 716 Bennett Valley Road, which was historically used as an automotive repair facility, was not accessible and recommended that the interior be inspected if future site development activities or changes in use include demolition of the former auto repair building.
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the Phase I ESA conducted in 2020, Path Forward identified the auto repair building as a REC. The auto repair building was reportedly sealed several years ago due to vandalism and Path Forward was unable to access the interior of the auto repair building to inspect for evidence of environmental hazards. In addition, a subterranean boiler room in the main building that displayed evidence of a potential historical underground storage tank (UST) was also identified as a REC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective

The objective of the subsurface Site investigation was to assess for soil and/or soil gas impacts that could affect future development, including whether an UST remains at the Site and whether a UST and/or historical auto repair operations have impacted the property.

Pre-Fieldwork Activities

The following pre-fieldwork activities were performed by Path Forward:

- Prepared a Site-specific health and safety plan (HASP) for the work proposed at the Site in accordance with the requirements of Title 29 of the Code of Federal Regulations, Section 1910.120 (29 CFR 1910.120). A copy of the HASP was kept onsite during field activities. The HASP detailed the work to be performed, safety precautions, emergency response procedures, nearest hospital information, and on-Site personnel responsible for managing emergency situations.

- Marked proposed boring locations in white paint and contacted Underground Service Alert (USA) at least 48 hours prior to sampling. Path Forward was given USA Ticket number X023103127 on September 16, 2020. In addition, Path Forward hired Ground Penetrating Radar Systems, Inc. (GPRS), a professional utility location firm, to clear proposed boring locations of potential subsurface...
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
</table>
| | utilities prior to drilling so that borings could be positioned accordingly in the field. | • Obtained a permit (permit number SR0017065) from the County of Sonoma Department of Health Services on September 1, 2020.
• Communicated with subcontractors including drillers, laboratories, utility locators, and couriers, as needed; and
• Coordinated Site access for these investigation efforts. |

Geophysical Survey
Path Forward oversaw a geophysical survey performed by GPRS on September 21, 2020. GPRS’s objective was to investigate accessible portions of the Site that the Phase I ESA had identified as potentially containing an UST. GPRS utilized an electromagnetic pipe locator and ground penetrating radar (GPR) in the identified area.

As summarized in GPRS’ report, the subsurface conditions at the time of the scanning allowed for maximum GPR depth penetration of 2 feet below ground surface (bgs) in most areas. Multiple utilities were observed during the scanning; however, utility locating was not part of the scope of this project. The equipment and methods used did not detect reactions from potential UST’s.

Conclusions and Recommendations
With the exception of one 4,4’-DDT detection, soil sampling results from this investigation are below Tier 1 ESLs or are within background levels, and not indicative of a release. Given the planned development and limited detections, this result is unlikely to be considered significant if soils are to remain on-Site during redevelopment. Soil sampling results were additionally below hazardous waste thresholds and would likely be classified as non-hazardous if disposed of as waste.

Soil gas sampling results are low and not indicative of a release. Even assuming the highly conservative attenuation factor of 0.03,
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Compliance determinations</th>
</tr>
</thead>
</table>
| the cumulative vapor intrusion risks are below the 1×10^{-6} to 1×10^{-4} (1 to 100 per million) risk-management range. Based on these soil gas sampling results, vapor mitigation measures are not warranted for new residential buildings at the Site.

In conclusion, the investigation did not reveal soil or soil gas impacts that would affect future development. The investigation did not find any indication that a UST remains at the Site or that historical auto repair operations or a potential UST have impacted the property. Based on the findings of the investigation, the Site is suitable for redevelopment for residential use.

Pre-Demolition Asbestos and Lead Inspection

Since the structures will be demolished, a Pre-Demolition Asbestos and Lead Inspection was conducted in December 2020. The inspection was required as per HUD, Cal-OSHA and Bay Area Air Quality Management District (BAAQMD) regulations.

Senior Center, 704 Bennett Valley Road

Analytical results indicated that various materials contain asbestos in the building. Based on these results, NorBay Consulting recommends that a licensed asbestos remediation contractor be utilized to remove these materials prior to demolition activities taking place that would disturb them. The contractor chosen must be familiar with and abide by the strict rules and regulations regarding the removal, packaging and disposal of asbestos containing materials and materials containing detectable levels (<1%) of asbestos.

HUD defines action level as the hazard level or which a corrective response action will be required. Currently, the most widely used action level for lead-based paint (LBP) is 1.0 mg/cm² (as measured by an XRF) established by HUD and adopted by the U.S. Environmental Protection Agency. The action level is 5000 parts per million (pip) or 0.5% by weight when collected paint chip samples are analyzed using atomic absorption spectroscopy (AAS). HUD guidelines consider XRF findings of 1.0 mg/cm² or greater, as lead based paint, which may be a potential hazard. It is extremely
Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
</table>

important to understand that XRF readings, which have a value of 0.0 mg/cm², do not necessarily mean there is “no lead present.”

A total of two hundred and thirty-seven (237) readings were collected of interior and exterior painted/coated surfaces during the inspection. In addition, six (6) calibration readings were also collected. Lead based paint/glazing was located on 18 components/fixtures tested.

Current EPA and Hud guidelines recommend that surfaces containing lead based paint in damaged condition to be considered “lead-based paint hazards” and should be addressed through abatement (permanent removal) or interim controls (temporary). Surfaces containing lead based paints in intact condition should be monitored but are not considered to be “lead based paint hazards”.

At the time of inspection, none of the components were found to contain damaged lead based paints/glazing that would be considered a “lead-based paint hazard”.

Prior to renovation activities, the light tubes should be removed as a separate item and/or concurrently with other hazardous materials removal. Precautions should be utilized to reduce the amount of breakage due to the potential release of mercury, cadmium and antimony particles.

Three light fixture ballasts were disassembled and the verbiage “No PCB’s” was observed on all three. NorBay Consulting recommends that all light fixture ballasts be checked for polychlorinated biphenyls (PCB’s) prior to removal and disposal. Any PCB ballast located should be removed, packaged and disposed of as PCB waste.

Art Start Building, 716 Bennett Valley Road

A total of eleven (11) samples of suspect asbestos containing building materials were collected during the inspection. Upon analysis by Polarized Light Microscopy (PLM) the following
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>materials were found to contain varying percentages of asbestiform minerals or are materials known to contain asbestos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• None.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A total of sixty-five (65) readings were collected of interior painted/coated surfaces during the inspection. In addition, six (6) calibration readings were also collected. For the report lead based paint includes readings ≥ 1.0 mg/cm², lead-containing paint includes readings ≥ 0.1 to ≤ 1.0 mg/cm² and no lead detected includes readings of 0.0 mg/cm². It is extremely important to understand that XRF readings, which have a value of 0.0 mg/cm², do not necessarily mean there is “no lead present” but rather the level is below what the instrument can read. Lead based paint/glazing was located on the following components/fixture:

- Exterior beige and green wooden soffit on all sides,
- Exterior beige wooden corner board, siding and fascia on the north side,
- Exterior green wooden window frame on the north side,
- Interior white wooden siding on the porch,
- Interior white wooden window frame and windowsill on the porch.

Florescent light tubes suspected of containing low levels of mercury, cadmium and antimony were observed in the building however no suspect mercury containing thermostats were observed. One light ballast was checked for PCB verbiage and was found to contain no PCB’s.

Conclusion

The site is safe for residential development. Mitigation is required for the protection of workers during demolition and the safe disposal of hazardous materials in the existing buildings.

Mitigations Required: HZ1 and HZ2

Source Documentation: (15) (16) (17) (18) (Appendix E)
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endangered Species</td>
<td>Regulatory Setting</td>
<td></td>
</tr>
<tr>
<td>Endangered Species Act of 1973, particularly section 7; 50 CFR Part 402</td>
<td>Federal Endangered Species Act (FESA) - U.S. Fish and Wildlife Service</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Pursuant to ESA, the U.S. Fish and Wildlife Service (USFWS) has regulatory authority over federally listed species. Under ESA, a permit to “take” a listed species is required for any federal action that may harm an individual of that species. Take is defined under Section 9 of ESA as “to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or attempt to engage in any such conduct.” Under federal regulation, take is further defined to include habitat modification or degradation where it would be expected to result in death or injury to listed wildlife by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering. Section 7 of ESA requires all federal agencies to consult with USFWS to ensure that their actions are not likely to “jeopardize the continued existence” of any listed species or “result in the destruction or adverse modification” of designated critical habitat. No federal approvals or other actions are anticipated as being required to implement the project at this time. Therefore, consultation under Section 7 of ESA is not expected. However, if USACE determines that wetlands and/or other waters of the United States on the project site are subject to protection under Section 404 of the CWA, or any other federal action becomes necessary, consultation under Section 7 of ESA would be required.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For projects where federal action is not involved and take of a listed species may occur, the project proponent may seek to obtain a permit for incidental take under Section 10(a) of ESA. Section 10(a) of ESA allows USFWS to permit the incidental take of listed species if such take is accompanied by a habitat conservation plan (HCP) that includes components to minimize and mitigate impacts associated with the take. The permit is known as an incidental take permit. The project proponent must obtain a permit before conducting any otherwise-lawful activities</td>
<td></td>
</tr>
</tbody>
</table>
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
</table>

that would result in the incidental take of a federally listed species.

Clean Water Act Sections 404 and 401 - U.S. Army Corps of Engineers

USACE regulates the discharge of dredged or fill material into waters of the United States under Section 404 of the CWA. Waters of the United States are defined as waters where use, degradation, or destruction could affect interstate or foreign commerce, tributaries to any of these waters, and wetlands that meet any of these criteria or that are somehow connected to any of these waters or their tributaries. Wetlands are defined as areas that are inundated or saturated by surface water or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted to life in saturated soil conditions. Wetlands falling under USACE jurisdiction must demonstrate the presence of three specific wetland parameters: hydric soils, hydrophytic vegetation, and sufficient wetland hydrology. Generally, wetlands include swamps, marshes, bogs, and similar areas. Lakes, rivers, and streams are defined as “other waters.” Jurisdictional limits of these features are typically noted by the ordinary high-water mark (OHWM). The OHWM is the line on the shore or bank that is established by the fluctuations of water and indicated by physical characteristics, such as a clear, natural line impressed on the bank, shelving, changes in soils, lack of woody or terrestrial vegetation, the presence of litter or debris, or other characteristics of the surrounding areas.

Isolated ponds or seasonal depressions had been previously regulated as waters of the United States. However, in Solid Waste Agency of Northwestern Cook County (SWANCC) v. United States Army Corps of Engineers et al. (January 8, 2001), the U.S. Supreme Court ruled that certain “isolated” wetlands (e.g., non-navigable, isolated, and intrastate) do not fall under the jurisdiction of the CWA and are no longer under USACE jurisdiction (although isolated wetlands are regulated by the State of California under...
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are formal compliance steps or mitigation required?</td>
</tr>
</tbody>
</table>
| the Porter-Cologne Water Quality Control Act). Some circuit courts (e.g., U.S. v. Deaton, 2003; U.S. v. Rapanos, 2003; Northern California River Watch v. City of Healdsburg, 2006), however, have ruled that the SWANCC opinion does not prevent CWA jurisdiction if a “significant nexus” such as a hydrologic connection exists, whether it be human-made (e.g., roadside ditch) or natural tributary to navigable waters, or direct seepage from the wetland to the navigable water, a surface or underground hydraulic connection, an ecological connection (e.g., the same bird, mammal, and fish populations are supported by both the wetland and the navigable water), and changes to chemical concentrations in the navigable water due to water from the wetland. Section 404 prohibits the discharge of dredged or fill material into waters of the United States (including wetlands) without a permit from USACE. The regulations and policies of USACE, the U.S. Environmental Protection Agency (EPA), and USFWS mandate that the filling of wetlands be avoided unless it can be demonstrated that no practicable alternatives (to filling wetlands) exist. If the placement of fill into waters of the U.S., including wetlands, meets certain criteria the project be permitted under one of the Nation Wide Permits (NWP), which is an expedited permit process. Section 401 of the CWA requires an applicant for any federal permit that may result in a discharge into waters of the United States to obtain a certification from the state that the discharge will comply with provisions of the CWA. The regional water quality control boards (RWQCBs) administer this program. Any condition of water quality certification would be incorporated into the USACE permit. The state has a policy of no net loss of wetlands and typically requires mitigation for impacts on wetlands before it will issue a water quality certification.

Species of Concern

A Species List was obtained for the project in January 2021 from the United States Fish and Wildlife Service. The List identifies threatened, endangered, proposed and candidate species, as well
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>as proposed and final designated critical habitat, under the jurisdiction of the U.S. Fish and Wildlife Service (Service) that may occur within the boundary of the proposed project and/or may be affected by said project. The species list fulfills the requirements of the Service under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.). Listed species are:</td>
</tr>
</tbody>
</table>

Birds:
- Northern Spotted Owl (*Strix occidentalis caurina*)

Reptiles:
- Green Sea Turtle (*Chelonia mydas*)

Amphibians:
- California Red-legged Frog (*Rana draytonii*)
- California Tiger Salamander (*Ambystoma californiense*)

Insects:
- San Bruno Elfin Butterfly (*Callophrys mossii bayensis*)

Crustaceans:
- California Freshwater Shrimp (*Syncaris pacifica*)

Flowering Plants:
- Burke’s Goldfields (*Lasthenia burkei*)
- Clara Hunt’s Milk-vetch (*Astragalus clarianus*)
- Sebastopol Meadowfoam (*Limnanthes vinculans*)
- Showy Indian Clover (*Trifolium amoenum*)
- Sonoma Sunshine (*Blenosperma bakeri*)
- White Sedge (*Carex albida*)

Critical Habitat
The project site is located outside all areas identified as Critical Habitat for the California tiger salamander (USFWS 2011),
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Compliance Factors</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>California red-legged frog (USFWS 2010) and northern spotted owl (USFWS 2012).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Impacts

The site is fully developed with buildings and paved parking areas. There is no exposed soil on the site except for small landscaped areas. There is no suitable special-status plant or animal habitat on the site.

There is no effect to listed species as a result of the project.

Conclusion

There is no effect to listed species as a result of the project.

Mitigation is needed for the protection of nesting birds during construction.

Mitigations Required: ES1

Source Documentation: (7) (19) (20) (21) (Appendix C)

<table>
<thead>
<tr>
<th>Explosive and Flammable Hazards</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 CFR Part 51 Subpart C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The project is located in an area surrounded by residential and commercial land uses; the project will not be located near any explosive or thermal source hazards.

Source Documentation: (7) (8) (15) (16) (22)

<table>
<thead>
<tr>
<th>Farmlands Protection</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmland Protection Policy Act of 1981, particularly sections 1504(b) and 1541; 7 CFR Part 658</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prime farmland is land best suited for producing food, forage, fiber, and oilseed crops and also available for these uses (the land could be cropland, pastureland, rangeland, forest land, or other land but not urban built-up land or water).

The project will not affect farmlands. No federally designated Farmlands have been identified within the project area.

Source Documentation: (7) (23) (24)

<table>
<thead>
<tr>
<th>Floodplain Management</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Order 11988, particularly section 2(a); 24 CFR Part 55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The project involves acquisition and development of real property. The project is not located within a FEMA identified Special Flood Hazard Area. The project site is located in Zone X: Areas of Minimal Flooding.
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No Base Flood Elevations or depths are shown within this zone. Insurance purchase is not required in Zone X. The subject property flood hazard designation is depicted on FIRM Map Number 06097C0737F, effective October 16, 2012. Flood insurance is not required. Source Documentation: (12) (Appendix C)</td>
</tr>
</tbody>
</table>

Historic Preservation
National Historic Preservation Act of 1966, particularly sections 106 and 110; 36 CFR Part 800

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Undertaking
Freebird Development proposes to develop the Bennett Valley Road Affordable Housing project on a 1.93-acre site composed of four parcels, with address 702 Bennett Valley Road (APN 009-333-014-000), 716 Bennett Valley Road (APN 009-333-009-000), 921 Rutledge Avenue (APN 038-151-004-000), and 927 Rutledge Avenue (APN 038-151-011-000), in Santa Rosa, Sonoma County, California 95404. The project will demolish existing improvements (buildings constructed in 1925 and parking lot), to construct a new, four-story building with 62 affordable apartments. The unit mix is 19 studios, 19 one-bedroom units, eight (8) two-bedroom units, and 16 three-bedroom units, for a total of 62 units. One unit will be reserved for an on-site manager. A total of 52 parking spaces will be provided on-site, in addition to 32 long-term bicycle parking spaces, six (6) short-term bicycle parking spaces, and one (1) electric vehicle (EV) charging station. Amenities include a community room, office suite, laundry facilities, and residential storage.

Common outdoor space will be provided with fenced courtyard and children’s play area. The project will provide affordable housing to moderate and low-income families and formerly at-risk residents.

Area of Potential Effects (APE)
The Area of Potential Effects (APE) for the built environment includes the four subject property parcels (direct APE) and
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are formal compliance steps or mitigation required?</td>
</tr>
</tbody>
</table>

surrounding properties, as shown below. The APE for archaeology is the limit of the subject parcels themselves (see below in pink).

Map 3 Area of Potential effects

Built Environment

There are 21 lots within the APE. Of these, nine contain buildings that are at least fifty years old. Department of Parks and Recreation Forms 523A (Primary Record) and 523B (Building, Structure and Object Record) were prepared for these nine buildings. The subject building, which was constructed in 1930, was previously evaluated and found not to be individually historically significant; consequently, it was not recorded on a DPR form. 716 Bennett Valley Road, the Art Start Center, was included in the same evaluation and is similarly not recorded. The remaining properties within the APE are a combination of residential buildings along Grand and Ware Avenues to the east and south of the subject building and light industrial between Santa Rosa Avenue/Petaluma Hill Road, Ware Avenue and Rutledge Avenue to the west of the subject building.
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The properties within the APE are not eligible for the National Register, either individually or as part of a potential historic District.</td>
</tr>
</tbody>
</table>

Archaeology

A search of the *California Historical Resources Information System* was conducted by the Northwest Information Center (NWIC File No.: 20-0914) on November 24, 2020.

The records search was conducted for the project by reviewing pertinent Northwest Information Center (NWIC) base maps that reference cultural resources records and reports, historic-period maps, and literature for Sonoma County. Please note that use of the term cultural resources includes both archaeological resources and historical buildings and/or structures.

Review of this information indicates that there has been no archaeological studies that cover the proposed project area. The proposed project area was included in the general study area of Bloomfield’s Cultural Heritage Survey of the City of Santa Rosa (1989), but the extant buildings within the proposed project were not inventoried or evaluated. This proposed project area contains no recorded archaeological resources. The State Office of Historic Preservation Built Environment Resources Directory (OHP BERD), which includes listings of the California Register of Historical Resources, California State Historical Landmarks, California State Points of Historical Interest, and the National Register of Historic Places, lists no recorded buildings or structures within or adjacent to the proposed project area. In addition to these inventories, the NWIC base maps show no recorded buildings or structures within the proposed project area.

Native American Tribes

Ethnographic literature indicates that, at the time of contact with Euroamericans, the proposed project area was within the territory of speakers of a Southern Pomo language, one of seven distinct Pomo languages of the Hokan Stock. Stewart (1943) identified multiple smaller sociopolitical units of the Southern Pomo that
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
</table>
| | | were comprised of large extended families forming tribelets. The Bitakomtara generally occupied an area of approximately 200 square miles from Sonoma Mountain in the east, south to present day Cotati, bounded on the west by the Laguna and Mark West Creek to the north. Barrett recorded the old village site of hukabetcawi as being found near the south bank of the Santa Rosa Creek at a short distance from the depot of the California Northwestern railway in Santa Rosa, and this most likely served as the principal village for the Bitakomtara. There are no Native American resources in or adjacent to the proposed project area referenced in the ethnographic literature. Based on an evaluation of the environmental setting and features associated with known sites, Native American resources in this part of Sonoma County have been found in close proximity to intermittent and perennial watercourses; near ecotones and other productive resource environments; and within the hill to valley interface. The proposed project area is located along the floor of the Santa Rosa Plain, away from any intermittent and perennial watercourses. Given the dissimilarity of these environmental factors, there is a low potential for unrecorded Native American resources to be within the proposed project area. AEM Consulting referred to HUD’s Tribal Directory Assessment Tool on November 9, 2020, to obtain a list of Federally-recognized tribes. AEM Consulting sent a Sacred Lands File database search request to the Native American Heritage Commission (NAHC) on November 9, 2020, to determine if there are any Sacred Lands or other Tribal resources located within or near to the project site, and to obtain a list of Native American tribes who may have additional information about Sacred Lands within or near the project site. A search of the Sacred Lands file conducted by the NAHC on November 17, 2020, was negative, meaning that it did not indicate the presence of any Native American Sacred Lands within or in the immediate vicinity of the project site. A list of
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
</table>

tribes was provided by the NAHC that may have interest in the project site.

Subsequently, on December 9, 2020 the City of Santa Rosa sent a letter to each tribe identified that may have interest in the project site. Each letter was mailed via Certified Mail with a physical Return Receipt. No responses have been received to date.

Conclusions
The subject property buildings do not appear eligible for listing on the National Register of Historic Places. There are no buildings in the Area of Potential Effects of the undertaking that appear eligible for listing on the National Register of Historic Places. There is a low potential for Native American archaeological resources and a moderate potential for historic-period archaeological resources to be within the project area.

Finding
The City of Santa Rosa finds *No historic properties affected by the undertaking*. Further, that mitigation measures will be required for accidental discovery of buried cultural resources or human remains during construction activities.

Consultation
The City of Santa Rosa, as Agency Official for the project, initiated consultation with the Office of Historic Preservation on February 10, 2021. The City provided a description of the Undertaking, an Area of Potential Effects and documented efforts to identify historic properties within the Area of Potential Effects. Further, make a finding that no historic properties will be affected by the undertaking.

Mitigations Required: CR1 and CR2
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
</table>

Noise Abatement and Control

|---|---------------------------|

Noise Abatement Act of 1972, as amended by the Quiet Communities Act of 1978; 24 CFR Part 51 Subpart B

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Regulatory Background

The U.S. Department of Housing and Urban Development (HUD) environmental noise regulations are set forth in 24 CFR Part 51B (Code of Federal Regulations). The following exterior noise standards for new housing construction would be applicable to this project:

- 65 dBA DNL or less – acceptable.
- Exceeding 65 dBA DNL but not exceeding 75 dBA DNL – normally unacceptable (appropriate sound attenuation measures must provide an additional 5 decibels of attenuation over that typically provided by standard construction in the 65 dBA DNL to 70 dBA DNL zone; 10 decibels additional attenuation in the 70 dBA DNL to 75 dBA DNL zone).
- Exceeding 75 dBA DNL – unacceptable.

These noise standards also apply, “... at a location 2 meters from the building housing noise sensitive activities in the direction of the predominant noise source...” and “...at other locations where it is determined that quiet outdoor space is required in an area ancillary to the principal use on the site.”

A goal of 45 dBA DNL is set forth for interior noise levels and attenuation requirements are geared toward achieving that goal. It is assumed that with standard construction any building will provide sufficient attenuation to achieve an interior level of 45 dBA DNL or less if the exterior level is 65 dBA DNL or less. Where exterior noise levels range from 65 dBA DNL to 70 dBA DNL, the project must provide a minimum of 25 decibels of attenuation, and a minimum of 30 decibels of attenuation is required in the 70 dBA DNL to 75 dBA DNL zone. Where exterior noise levels range from 75 dBA DNL to 80 dBA DNL, the project must provide a...
Compliance Factors:
Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum of 35 decibels of attenuation to achieve an interior level of 45 dBA DNL or less.</td>
<td></td>
</tr>
</tbody>
</table>

NEPA Noise Assessment

Illingworth & Rodkin, Inc. conducted a *NEPA Noise Assessment* for the project in January 2021. A summary follows and the report can be found in Appendix G.

Significance Criteria

An adverse effect would result if noise levels at the project site would exceed HUD Guidelines for acceptability. Exterior noise levels exceeding 65 dBA DNL or interior noise levels exceeding 45 dBA DNL would exceed HUD’s noise compatibility criteria.

Future Exterior Noise Environment

The primary noise sources affecting the project site are vehicular traffic along State Highway 12 and Bennett Valley Road. Pursuant to the HUD Guidelines, the noise exposure at least 10 years in the future must be considered in addition to the existing noise exposure. Assuming a 1% per year increase in traffic volumes along Bennett Valley Road and State Highway 12, the HUD DNL calculator yields a 2031 traffic noise level of 68 dBA DNL at the setback of the site. Applying the HUD Barrier Performance Module to account for the existing State Highway 12 barrier, yields a traffic noise level at the set back of the site of 64 dBA DNL.

Exterior use areas would include a 2-5 year old play area, a 5-12 year old play area, community garden, and dining/lounge. The exterior use areas are located on the east side of the project. Based on the results of noise modeling in SoundPLAN, the HUD DNL Calculator, and the HUD Barrier Performance Module, proposed outdoor use areas on the ground level would be exposed to exterior noise levels ranging from 52 to 55 dBA DNL, with the highest exposure (55 dBA DNL) occurring in the community garden. These noise levels would be considered acceptable in accordance with HUD’s exterior noise criteria.
<table>
<thead>
<tr>
<th>Compliance Factors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Are formal compliance steps or mitigation required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The HUD DNL Calculator accuracy suffers in complex scenarios including multiple sources of shielding and terrain differences. Thus a combination of the HUD DNL Calculator and SoundPlan were used to determine the exterior noise levels at the project site.</td>
</tr>
</tbody>
</table>

Future Interior Noise Environment

A HUD goal of 45 dBA DNL is set forth for interior noise levels.

Based on a review of site and floor plans developed by HKIT Architects, shared community spaces would be located on the ground level, with residential units located on floors 1 through 4.

The HUD DNL Calculator and Barrier Performance tool yield an exterior noise level of 64 dB DNL at the north building façade adjacent to State Highway 12. The noise modeling results calculated in SoundPLAN, yielded a future exterior exposure of the north facing façades adjacent to State Highway 12 would be 65 dBA DNL. The exterior exposure of the east facing façades would range from 51 to 64 dBA DNL, the exterior exposure of the west facing façades would range from 51 to 59 dBA DNL and the exterior noise levels at the south facing façades would be up to 40 dBA DNL. The predicted exterior noise levels meet HUD’s “normally acceptable” threshold of 65 dBA DNL.

For all building facades, exterior noise levels would be 65 dBA DNL or less and interior noise levels would be 45 dBA DNL or less assuming standard construction only. To maintain a habitable interior environment, all 1st-4th floor units, as shown in the figure below, to be mechanically ventilated so that windows and doors can be kept closed at the occupant’s discretion to control noise intrusion indoors.
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sole Source Aquifers
Safe Drinking Water Act of 1974, as amended, particularly section 1424(e); 40 CFR Part 149</td>
<td>Yes ☑ No ☐</td>
<td>The project activities do not affect a sole source aquifer, as there are no aquifers subject to a MOU between EPA and HUD in Sonoma County.
Source Documentation: (36) (Appendix H)</td>
</tr>
<tr>
<td>Wetlands Protection
Executive Order 11990, particularly sections 2 and 5</td>
<td>Yes ☑ No ☐</td>
<td>The site is not listed on the National Wetlands Inventory database map provided by the U.S. Fish and Wildlife Service and accessed on January 19, 2021.
As discussed elsewhere in this report, the subject property is urban infill, and covered in improvements (impervious surfaces), namely buildings and paved parking areas.
As the site contains no exposed soil, trenches, or other water feature; and as the site is not located near any riparian areas, wetlands, lakes or other water sources, there are no wetlands on the subject property.
The project will have no effect to wetlands.
Source Documentation: (37) (Appendix C)</td>
</tr>
</tbody>
</table>

Figure 10 Units Recommending Mechanical Ventilation

Mitigation Required: N1

Source Documentation: (7) (35) (Appendix G)
<table>
<thead>
<tr>
<th>Compliance Factors: Statutes, Executive Orders, and Regulations listed at 24 CFR §58.5 and §58.6</th>
<th>Are formal compliance steps or mitigation required?</th>
<th>Compliance determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild and Scenic Rivers</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Wild and Scenic Rivers Act of 1968, particularly section 7(b) and (c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Environmental Justice | Yes | No | The project will not raise environmental justice issues and has no potential for new or continued disproportionately high and adverse human health and environmental effects on minority or low-income populations. The project is suitable for its proposed use. |
| Environmental Justice Executive Order 12898 | | | Source Documentation: (7) (40) (Appendix H) |
Environmental Assessment Factors [24 CFR 58.40; Ref. 40 CFR 1508.8 &1508.27] Recorded below is the qualitative and quantitative significance of the effects of the proposal on the character, features and resources of the project area. Each factor has been evaluated and documented, as appropriate and in proportion to its relevance to the proposed action. Verifiable source documentation has been provided and described in support of each determination, as appropriate. Credible, traceable and supportive source documentation for each authority has been provided. Where applicable, the necessary reviews or consultations have been completed and applicable permits of approvals have been obtained or noted. Citations, dates/names/titles of contacts, and page references are clear. Additional documentation is attached, as appropriate. All conditions, attenuation or mitigation measures have been clearly identified.

Impact Codes: Use an impact code from the following list to make the determination of impact for each factor.

1. Minor beneficial impact
2. No impact anticipated
3. Minor Adverse Impact – May require mitigation
4. Significant or potentially significant impact requiring avoidance or modification which may require an Environmental Impact Statement

<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformance with Plans / Compatible Land Use and Zoning / Scale and Urban Design</td>
<td>2</td>
<td>General Plan Land Use and Zoning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The General Plan Land Use designation for the subject property is Medium Density Residential (8-18 units per acre). The project is able to obtain entitlements utilizing SB35 streamlined ministerial review under the California Environmental Quality Act (CEQA) and the state’s Density Bonus Law. In January 2021, City of Santa Rosa staff reviewed the proposal to build the 62-unit affordable housing complex at 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, and deemed the project eligible for processing under the provisions of SB35 with minor comments incorporated. Scale and Urban Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The project proposes a four-story building. Existing site improvements are two-stories in height. The site is bounded by low-rise residential uses to the east and south; an elevated highway to the north; and commercial uses to the west. The project scale and design is appropriate for the area and compatible with surrounding development.</td>
</tr>
<tr>
<td>Source Documentation:</td>
<td></td>
<td>(7) (41) (42) (43) (44)</td>
</tr>
<tr>
<td>Soil Suitability/ Slope/ Erosion/ Drainage/ Storm Water Runoff</td>
<td>3</td>
<td>A Geotechnical Exploration study was completed by ENGEO in October 2020. A summary follows and the report can be found in Appendix H. Soil Suitability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The purpose of the study was to assess the geologic and geotechnical risk pertinent to the project site and to provide geotechnical recommendations for</td>
</tr>
</tbody>
</table>
Environmental Assessment Factor | Impact Code | Impact Evaluation
--- | --- | ---

The designs of the proposed development in Santa Rosa, California. The approximately 1.9-acre Site incorporates four adjacent parcels, and is located in a mixed-used residential and commercial neighborhood. The site is currently occupied by the Santa Rosa Senior Center and ArtStart studio, which includes one single-story commercial structure near the northern extent of the Site. The remainder of the Site is developed with paved parking areas and landscaping.

The proposed development includes construction of a multi-family residential building, consisting of four stories of residential units, paved parking areas, and minor landscaping. The residential building will be located centrally within the property, with paved parking areas planned at the northern portion of the site, and landscape area at the southern portion of the site. The residential building will consist of wood-frame construction, resulting in light to moderate building loads. It is understood that the vacant buildings at the site are planned for demolition and will not be incorporated in the future development. In addition, it is anticipated that only minor site grading will be conducted at the site to establish drainable building pad.

Site Geology

Regional geologic mapping, indicates the site is underlain by Holocene alluvial fan and fluvial terrace deposits (Qhf) comprising gravel, sand, and silt derived from Pleistocene and older sedimentary and igneous units.

Filed Exploration

To characterize the subsurface conditions, field exploration was conducted on September 21, 2020, consisting of two borings advanced in paved parking areas.

Subsurface Conditions

Explorations encountered up to 6 inches thick of combined asphalt concrete and aggregate base material in the parking area. Beneath the pavement section, ENGEIO encountered up to 4 feet of stiff fat (high plasticity) clay over very stiff to hard sandy lean clay to depths ranging between approximately 14 to 16 feet below ground surface (bgs). Below the clayey soil, ENGEIO generally encountered dense to very dense poorly graded sand with clay and gravel to termination depths of the borings. In Boring 1-B1, ENGEIO encountered medium dense layers of sandy soil at depths of approximately 35, 40, and 50 feet bgs.
<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticity Index (PI)</td>
<td></td>
<td>A plasticity index (PI) ranging from 21 to 38 was determined on the near-surface soil. It is an indication that the near-surface soil exhibits moderate to very high shrink/swell potential.</td>
</tr>
<tr>
<td>Groundwater Conditions</td>
<td></td>
<td>During field exploration, groundwater was encountered approximately 25½ feet bgs in Boring 1-B1 and approximately 24 feet bgs in Boring 1-B2. The measurements were recorded at the time of drilling; however, measurements recorded during exploration do not represent a fully equilibrated groundwater level, and fluctuations should be expected. Review of publicly available groundwater information included nearby well data from the Water Data Library maintained by the California Department of Water Resources indicates groundwater levels range between approximately 16 to 22 feet bgs. Based on the available information, groundwater is estimated to vary between 16 to 25 feet bgs at the subject site. The groundwater level could be higher during future rainy seasons with greater average rainfall. In addition, fluctuations in the level of groundwater may occur due to variations in irrigation practices and other factors not evident when measurements were taken.</td>
</tr>
<tr>
<td>Expansive Soil</td>
<td></td>
<td>The results of laboratory testing of the near-surface clay yielded plasticity index (PI) values ranging from 21 to 38, which indicates the near-surface soil exhibits moderate to very high shrink/swell potential. Expansive soil can shrink and swell as a result of moisture content changes. This can cause heaving and cracking of slabs-on-grade, pavements, and structures founded on shallow foundations near existing grade. Building damage due to volume changes associated with expansive soil can be reduced by: (1) using a rigid mat or slab foundation which is designed to resist the deflections associated with the soil expansion, (2) deepening the foundations to below the zone of moisture fluctuation, i.e. by using deep footings or drilled piers, and/or (3) using footings at normal shallow depths but bottomed on a layer of select fill having a low expansion potential. Design criteria for post-tensioned mat foundation are contained in the attached report. Special attention during construction in structural areas as well as areas with rigid surface improvements is recommended. It is imperative that exposed soil be kept moist prior to placement of concrete for foundation construction. It can be difficult to remoisturize clayey soil without excavation, moisture conditioning, and recompaction.</td>
</tr>
</tbody>
</table>
Environmental Assessment Factor | Impact Code | Impact Evaluation
--- | --- | ---

Specific grading recommendations for compaction of clayey soil at the site have been provided (see attached report). The purpose of these recommendations is to reduce the swell potential of the clay by compacting the soil at a high moisture content and controlling the amount of compaction.

Conclusion

From a geotechnical engineering perspective, the site is suitable for the proposed multi-family residential development, provided the recommendations presented in the Geotechnical Exploration report are properly incorporated into the design plans and specifications. From a geotechnical engineering viewpoint, the estimated liquefaction-induced settlement is likely tolerable for the proposed post-tension mat foundation system.

The primary geotechnical concerns that could affect development on the site are the relatively high seismicity, expansive soil, and soil corrosion potential.

The recommendations presented in the Geotechnical report shall be incorporated into the project plans and specifications and implemented during construction.

Mitigations Required: G1

Slope

The Site is relatively flat with existing grades ranging from approximate Elevation 160 feet near the northern extent of the site, to Elevation 162 feet above Mean Sea Level (WGS-84) at the southern perimeter of the site. The potential for landslides or slope instabilities to occur at the site is considered negligible.

Erosion

The site as it exists now is not subject to erosion. However, if not properly managed, erosion could occur during construction of the project.

Plans demonstrating the Best Management Practices for erosion control, sedimentation and water quality impacts to the maximum extent practicable must be submitted for review and approval by the City of Santa Rosa.

At a minimum, appropriate filter materials shall be provided at nearby catch basins to prevent debris and dirt from flowing into the storm drain system.
Drainage/Storm Water Runoff

Low Impact Development

The Low Impact Development (LID) Technical Design Manual is a set of guidelines established for the Santa Rosa area and other areas around Sonoma County which requires certain projects to incorporate sustainable LID strategies that encourage infiltration and minimize the introduction of pollutants into downstream receiving waters. The City of Santa Rosa has adopted this manual to satisfy the requirement in their municipal storm water permit. LID applies to the project as it will disturb more than 10,000 square feet of area.

Storm Water Pollution Prevention Measures

Pollution Prevention Measures or Source Control Measures are practices which help keep pollutants from coming into contact with storm water.

Increasing the amount of impervious surface area with the development of bare land generally increases the rate which storm water flows across a site. While the impact of increasing the impervious area for a single site is often insignificant, the cumulative impact of increasing the impervious area for multiple areas may have an adverse hydromodification effect on downstream facilities, because the cumulative increase has the potential to increase runoff causing downstream erosion and sediment load in the storm water conveyance system.

Storm Water Treatment Control Measures

In order to minimize downstream erosion and protect stream habitat, the Storm Water LID Technical Design Manual prioritizes Best Management Practices (BMPs) and requires that the designer first consider measures which capture storm water runoff from impervious surfaces and encourage infiltration. Developments in areas subject to contaminated soil or high ground water are discouraged from integrating measures which infiltrate storm water, but they are required to incorporate alternative designs which harvest storm water and treat runoff from impervious surfaces. If volume control measures are not feasible at the project site, then offset projects at a different location may accomplish this requirement.

Treatment Control BMPs are engineered systems that are designed to remove pollutants from storm water and are often categorized as being landscape-based or mechanical. These types of BMPs are required whenever a development proposes to infiltrate less water than is discharged from new or redeveloped impervious surfaces during the target storm event.

Temporary Measures
<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A "Sediment Control Plan" will be prepared and included with the construction drawings requiring the contractor to implement temporary storm water BMPs. The contractor will be required to use filter fabric, gravel bags, straw wattles or similar measures to collect sediment and filter water before allowing its discharge to downstream facilities. Construction entrances/exits will be designated on the drawings as having a blanket of rock, where applicable, to assist with removing dirt from trucks to minimize soil tracked into the public street during the early stages of construction. This drawing will also require that disturbed areas be seeded to help stabilize un-vegetated areas. Since the project will disturb more than 1-acre with construction, a Storm Water Pollution Prevention Plan will need to be prepared which more precisely identifies temporary storm water BMPs that may be incorporated during different phases of construction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution Prevention Measures</td>
<td></td>
<td>As part of the project, storm water inlets will be stenciled with graphics which identify that the inlets drain to the creek. The City of Santa Rosa also has a street sweeping program to help remove pollutants from public streets before pollutants have an opportunity to come into contact with storm water.</td>
</tr>
<tr>
<td>Project Impacts</td>
<td></td>
<td>In accordance with the Santa Rosa Area Standard Urban Storm Water Mitigation Plan (SUSMP) and Sonoma County Water Agency flood control criteria, the developer is required to develop a Storm Drain Master Plan that includes design drawings and calculations of the capacity of the proposed storm drain system for the project. SUSMP-recommended BMPs such as on-site storm water detention, storm drain line upgrades, or infiltration areas can be incorporated into the project design, as well as storm water treatment controls such as catch basins, storm water separators, and or/other SUSMP-recommended treatment BMPs. The Storm Drain Plan will also be required to include a hydraulic analysis consistent with Sonoma County Water Agency flood control design criteria to establish whether the existing municipal system has capacity to accommodate any increased flows resulting from the proposed project. The analysis will include Rational Method calculations of pre- and post-development 10-year peak flows and shall take into account drainpipe slope and elevations, drainpipe size(s), and system head losses. The Storm Drain Plan shall be submitted to the City of Santa Rosa and the Sonoma County Water Agency for review prior to approval. The Storm Drain Plan will be consistent with the City’s SUSMP, SCWA flood control criteria, and General</td>
</tr>
</tbody>
</table>
Environmental Assessment Factor

<table>
<thead>
<tr>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plan Policies; therefore there are no adverse impacts to water quality as a result of the project. The project proposes a net decrease in impervious surfaces and therefore it can be assumed that existing storm water drainage and facilities are adequate. The introduction of on-site storm water detention facilities and landscaped areas will serve to reduce runoff over existing conditions. No adverse impacts have been identified. Source Documentation: (7) (45) (46) (47) (48) (49) (Appendix H)</td>
</tr>
</tbody>
</table>

Hazards and Nuisances including Site Safety and Noise

<table>
<thead>
<tr>
<th>3</th>
<th>Site Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Geotechnical Exploration study was completed by ENGEO in October 2020. A summary follows and the report can be found in Appendix H.</td>
<td></td>
</tr>
<tr>
<td>Seismic Hazards</td>
<td></td>
</tr>
<tr>
<td>This site is located in a region that contains numerous active faults, which are defined by the State Mining and Geology Board as one that has had surface displacement within Holocene time (about the last 11,000 years). The major active faults in the area include the Hayward-Rodgers Creek, Maacama-Garberville, and West Napa faults to the northeast, and the San Andreas fault to the southwest. A strong magnitude (M) 6.0 earthquake recently occurred on the West Napa fault near Napa, California, resulting in shaking in the greater San Francisco Bay Region and surrounding areas. The earthquake was located 9 km (6 miles) southwest of Napa, California, at a depth of 11 km (6 mi) on a yet-to-be identified northwest-oriented strike-slip fault production. Numerous small earthquakes occur every year in the San Francisco Bay Region, and larger earthquakes have been recorded in the past and can be expected to occur in the future. The following table lists several of the nearby mapped faults and their proximity to the Site.</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Nearby Known Faults Capable of Producing Significant Ground Shaking at the Site

<table>
<thead>
<tr>
<th>FAULT NAME</th>
<th>APPROXIMATE DISTANCE FROM PROJECT SITE (MILES)</th>
<th>DIRECTION FROM SITE</th>
<th>MAXIMUM MOMENT MAGNITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayward-Rodgers Creek</td>
<td>1.2</td>
<td>Northeast</td>
<td>7.3</td>
</tr>
<tr>
<td>Maacama-Garberville</td>
<td>10.6</td>
<td>Northeast</td>
<td>7.4</td>
</tr>
<tr>
<td>West Napa</td>
<td>18.5</td>
<td>Northeast</td>
<td>6.7</td>
</tr>
<tr>
<td>San Andreas</td>
<td>18.9</td>
<td>Southwest</td>
<td>7.3</td>
</tr>
</tbody>
</table>
The figures below show the approximate locations of mapped known faults and significant historic earthquakes recorded within the San Francisco Bay Region.

Figure 11 Regional Faulting and Seismicity

Figure 12 Regional Faulting and Seismicity – Detail

The 2014 Working Group on California Earthquake Probabilities evaluated the regional seismicity of the Bay Area and published their results as The Uniform California Earthquake Rupture Forecast, Version 3 (UCERF 3). The Working Group periodically attempts to summarize seismic risk in California with time-dependent earthquake rupture forecasts, in which the probabilities of future events are conditioned upon the dates of previous earthquakes. According to
<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCERF 3, there is an aggregated 72 percent probability of a 6.7 MW (Moment Magnitude) or greater earthquake on an active Bay Area fault over the next 30 years. The probability of a 6.7 MW or greater earthquake on the Hayward and San Andreas faults are 14 and 6 percent, respectively, over the next 30 years. The site is not located within a currently designated Earthquake Fault Special Study Zone and no known surface expression of active faults is mapped within the site boundaries. Fault rupture through the site, therefore, is not likely. There are no earthquake-induced site effects known to have occurred at the project site in historic earthquake events. The site is not mapped in a seismic hazard zonation for potential permanent ground displacements due to liquefaction, based on the Seismic Hazard Zone Map (see figure below) by Department of Conservation, California Geologic Survey.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on the subsurface conditions encountered during field explorations, which comprise relatively very stiff and dense soil; Site Class D is suitable for the structural design. The 2019 CBC seismic design parameters are provided in the table below, which include design spectral response acceleration parameters based on the mapped Risk-Targeted Maximum Considered earthquake (MCER) spectral response acceleration parameters.
Potential seismic hazards resulting from a nearby moderate to major earthquake can generally be classified as primary and secondary. The primary effect is ground rupture, also called surface faulting. The common secondary seismic hazards include ground shaking, liquefaction, and ground lurching. The following sections present a discussion of these hazards as they apply to the Site. Based on topographic and lithologic data, the risk of regional subsidence, uplift or lurching is low to negligible at the site.

Ground Rupture

Since there are no known active faults crossing the site and the site is not located within a mapped Earthquake Fault Hazard Zone, ground rupture is unlikely at the subject site.

Ground Shaking

An earthquake of moderate to high magnitude generated within the San Francisco Bay Region could cause considerable ground shaking at the site, similar to that which has occurred in the past. To mitigate the shaking effects, all structures should be designed using sound engineering judgment and the 2019 California Building Code requirements, at a minimum.

Seismic design provisions of current building codes generally prescribe minimum lateral forces, applied statically to the structure, combined with the gravity forces of dead-and-live loads. The code-prescribed lateral forces are generally considered substantially smaller than the actual peak forces that would be associated with a major earthquake. Therefore, structures should be able to: (1) resist minor earthquakes without damage, (2) resist moderate earthquakes without structural damage but with some nonstructural damage, and (3) resist major earthquakes without collapse but with some structural as well as nonstructural damage. Conformance with the current building code

Table 8 2019 CBC Seismic Design Parameters, Latitude: 38.4302632, Longitude: -122.70973458

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESIGN VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Class</td>
<td>D</td>
</tr>
<tr>
<td>Mapped MCE spectral response accelerations for short periods, S_1 (g)</td>
<td>2.24</td>
</tr>
<tr>
<td>Mapped MCE spectral response accelerations for 1-second periods, S_1 (g)</td>
<td>0.887</td>
</tr>
<tr>
<td>Site Coefficient, F_A</td>
<td>1.0</td>
</tr>
<tr>
<td>Site Coefficient, F_U</td>
<td>Null*</td>
</tr>
<tr>
<td>MCE spectral response accelerations for short periods, S_{MS} (g)</td>
<td>2.24</td>
</tr>
<tr>
<td>MCE spectral response accelerations for 1-second periods, S_{MS} (g)</td>
<td>Null*</td>
</tr>
<tr>
<td>Design spectral response acceleration at short periods, S_{DSS} (g)</td>
<td>1.49</td>
</tr>
<tr>
<td>Design spectral response acceleration at 1-second periods, S_{DEE} (g)</td>
<td>Null*</td>
</tr>
<tr>
<td>Mapped MCE Geometric Mean Peak Ground Acceleration (g)</td>
<td>0.94</td>
</tr>
<tr>
<td>Site Coefficient, F_{PGA}</td>
<td>1.1</td>
</tr>
<tr>
<td>MCE Geometric Mean Peak Ground Acceleration, PGA (g)</td>
<td>1.03</td>
</tr>
</tbody>
</table>

*Required Site-specific ground motion hazard analysis per ASCE 7-16 Section 11.4.8
Environmental Assessment Factor	Impact Code	Impact Evaluation
		does not constitute any kind of guarantee that significant structural damage would not occur in the event of a maximum magnitude earthquake; however, it is reasonable to expect that well-designed and well-constructed structures will not collapse or cause loss of life in a major earthquake.

Liquefaction / Cyclic Softening

Soil liquefaction results from loss of strength during cyclic loading, such as imposed by earthquakes. Soil most susceptible to liquefaction are clean, loose, saturated, uniformly graded fine sands below the groundwater table. Empirical evidence indicates that loose fine-grained soil including low plasticity silt and clay is also potentially liquefiable. When seismic ground shaking occurs, the soil is subjected to cyclic shear stresses that can cause excess hydrostatic pressures to develop and liquefaction of susceptible soil to occur. If liquefaction occurs, and if the soil consolidates or vents to the surface during and following liquefaction, ground settlement and surface deformation may occur.

To assess liquefaction potential, ENGEO performed a standard penetration test (SPT) based liquefaction analysis using the methodology prepared by Youd and Idriss and Boulanger. ENGEO used the Mapped MCE Geometric Mean peak ground acceleration (PGAM) of 1.03g for liquefaction analysis based on the 2019 California Building Code. The Rogers Creek/Hayward fault with a maximum moment magnitude (Mw) of 7.3 is used in the analysis. ENGEO evaluated the liquefaction potential for the soil encountered below the assumed water table to a depth of 50 feet. The results indicate that some of the medium dense sandy soil layers encountered in their borings are potentially liquefiable.

Liquefaction-Induced Ground Settlement

Seismic-induced settlement can be generally subdivided into two categories, settlement as a result of liquefaction of saturated or nearly saturated soil, and dynamic densification of non-saturated soil. The soil above the groundwater table at this Site typically consists of clay soil; therefore, ENGEO does not consider dynamic densification of non-saturated soil to be a risk at this site.

Surface Manifestation of Liquefaction

ENGEO evaluated the capping effect of any overlying non-liquefiable soil over the potential liquefiable soil. In order for liquefaction-induced ground failure to occur, the pore water pressure generated within the liquefied strata must exert a sufficient force to break through the overlying soil and vent to the
Environmental Assessment Factor	Impact Code	Impact Evaluation
	surface resulting in sand boils or fissures. This loss of soil through venting could potentially result in a reduction of bearing capacity and settlement estimates that are impossible to predict.	
	In 1985, Ishihara presented preliminary empirical criteria to assess the potential for ground surface disruption at liquefiable sites based on the relationship between thickness of liquefiable sediments and thickness of overlying non-liquefiable soil. A more recent study by Youd and Garris expanded on the work of Ishihara to include data from over 308 exploratory borings, 15 different earthquakes, and several ranges of recorded peak ground acceleration.	
	ENGEEO evaluated the capping effect of non-liquefiable soil specific to conditions encountered in each boring. There is a sufficient thick cap of overlying non-liquefiable soil to prevent sand boils from the potential liquefiable layers.	
	Lateral Spreading	
	Lateral spreading is a failure within a nearly horizontal soil zone (possibly due to liquefaction) that causes the overlying soil mass to move toward a free face or down a gentle slope. Generally, the effects of lateral spreading are most significant at the free face or the crest of a slope and diminish with distance from the slope.	
	The site topography is relatively flat. The nearby Santa Rosa creek is located approximately 2,600 feet north of the project site. In addition, as discussed previously, potentially liquefiable layers are not continuous and are isolated. Therefore, the potential for lateral spreading is considered to be low.	
	Static Settlement	
	Based on the conditions encountered during field exploration and results from laboratory testing, the risk from load-induced settlement at the site is considered low. Provided recommendations regarding fill placement are followed, ENGEEO anticipates the majority of load-induced settlement will occur during construction, and post-construction settlement will be minor for the proposed multi-family residence.	
	Supplemental Exploration and Liquefaction Analysis	
	On January 15, 2021, ENGEEO conducted a subsequent exploration and retained the services of Conetec to advance three (3) CPT probes to depths up to 50 feet below ground surface (bgs). The CPTs were performed in	
Liquefaction Analysis

ENGEO conducted a liquefaction analysis based on the CPT data using the computer software Cliq (Version 2.2.1.4) developed by GeoLogismiki. The software incorporates the procedure introduced by the 1996 National Center for Earthquake Engineering Research (NCEER) workshop and the 1998 NCEER/National Science Foundation (NSF) workshop. The workshops are summarized by Youd et al. (2001) and updated by Robertson (2009). For the analysis, a Maximum Considered Earthquake (MCE) peak ground Acceleration (PGAM) of 1.03g was utilized with an earthquake magnitude of 7.3. A groundwater depth of 16 feet bgs was used based on pore pressure dissipation tests recorded during CPT operations. To assess seismically induced settlements, ENGEO considered the methodology presented by Zhang et al. The estimates for total liquefaction-induced total settlement at each CPT location are shown in the table below.

<table>
<thead>
<tr>
<th>EXPLORATION LOCATION</th>
<th>TOTAL COMPUTED LIQUEFACTION-INDUCED SETTLEMENT (INCHES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-CPT1</td>
<td>1⅛</td>
</tr>
<tr>
<td>1-CPT2</td>
<td>¾</td>
</tr>
<tr>
<td>1-CPT3</td>
<td>1¼</td>
</tr>
</tbody>
</table>

Figure 14 Total Computed Potential Liquefaction-Induced Settlement

It is estimated that differential settlement is approximately one-half the total settlement over the building width, or 50 feet, whichever is less.

Conclusion

From a geotechnical engineering perspective, the site is suitable for the proposed multi-family residential development, provided the recommendations presented in the Geotechnical Exploration report are properly incorporated into the design plans and specifications. From a geotechnical engineering viewpoint, the estimated liquefaction-induced settlement is likely tolerable for the proposed post-tension mat foundation system.
Environmental Assessment Factor	Impact Code	Impact Evaluation

The primary geotechnical concerns that could affect development on the site are the relatively high seismicity, expansive soil, and soil corrosion potential.

Mitigations Required: G1

Noise
Project-generated Traffic

As a residential housing project, community noise levels will not be significantly affected by the development. The only contribution to noise is expected to come from personal vehicle use.

The Traffic Operational Memorandum\(^2\) prepared for the project by Fehr & Peers estimates that the project will generate an estimated 336 new vehicle trips per day, per weekday, with 22 AM peak hour trips and 28 PM peak hour trips, as shown below.

Table 9 Vehicle Trip Generation

<table>
<thead>
<tr>
<th>ITE Code</th>
<th>Land Use</th>
<th>Dwelling Units</th>
<th>Daily Vehicle Trips</th>
<th>AM Vehicle Trips</th>
<th>PM Vehicle Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>221</td>
<td>Mid-Rise Multi-Family Residential</td>
<td>62</td>
<td>336</td>
<td>168</td>
<td>168</td>
</tr>
</tbody>
</table>

Notes:
1. 100% of units will be affordable housing, with 50% of those as supportive housing.
2. Based on fitted curve equation.

To cause a permanent increase in ambient noise in the vicinity, the project would need to cause a doubling of traffic in the area. Traffic on Sonoma Highway/Highway 12 is the dominant noise source and carries average daily traffic of 79,000 vehicles per day per Caltrans 2019 traffic counts. At 336 trips per day, the project is not anticipated to have any adverse impact to ambient noise in the vicinity.

Construction Noise

Noise effects from construction activities that would take place at the proposed action site under are a function of the noise generated by

\(2\) see Transportation section below.
Environmental Assessment Factor

<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
</table>
| Construction noise levels | | construction equipment, the location and sensitivity of nearby land uses, and the timing and duration of the noise-generating activities.
Construction noise levels are rarely steady in nature, but instead fluctuate depending on the number and type of equipment in use at any given time. There would be times when no large equipment is operating, and noise will be at or near ambient levels. In addition, construction related sound levels experienced by a noise sensitive receptor in the vicinity of the project site would be a function of distance.
The project does not involve pile driving or other extreme construction noise generating equipment. The project is subject to the City of Sant Rosa Municipal Code for hours and days of construction. This reduces any impact to nearby sensitive receptors (residents) to less than significant.
No mitigation is required.
Conclusion
The project will not create a risk of explosion, release of hazardous substances or other dangers to public health. The project is not located near any hazardous operations. The project will provide a safe place for residents.
Source Documentation: (7) (8) (45) (46) (50) (51) (52) (Appendix G & H) |
| Energy Consumption | 2 | The project will comply with Title 24 of the 2019 Energy Code and CalGreen Tier 1 requirements. In addition, the project will be an all-electric building, even though not required by the City of Santa Rosa’s Reach Code (as the project proposes four stories).
There are no adverse impacts to energy consumption identified as a result of the project.
Source Documentation: (7) (53) |

Socioeconomic

| Employment and Income Patterns | 1 | The project will house an estimated 247 persons per HUD guidelines and using the maximum population allowed (see Demographic Character Changes section below for how this number was calculated).
The City of Santa Rosa had a population of 26,801 as of the 2010 Census. The project represents 0.9% of the population. The project is not of sufficient scope to have impact employment and income patterns. |
<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Documentation:</td>
<td>1 (3) (7)</td>
<td></td>
</tr>
<tr>
<td>Demographic Character Changes, Displacement</td>
<td>3</td>
<td>Demographic Character Changes</td>
</tr>
<tr>
<td>At 62 units, it is not anticipated to induce substantial growth in population in the area. The project will help to address the need for housing projected in the Regional Housing Needs Allocation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on guidelines provided by HUD, the maximum number of residents appropriate to multi-family unit dwellings is two persons per bedroom, plus one per unit. Thus, at most there would be seven persons in a three-bedroom apartment, and five persons in a two-bedroom unit. The proposed project would provide 19 studios, 19 one-bedroom units, 8 two-bedroom units and 16 three-bedroom units. To consider the maximum number of persons the project could accommodate, HUD guidelines for the maximum number of residents will be used. Carrying the math forward, we see that (19 x 2) = 38 plus (19 x 3) = 57 plus (8 x 5) = 40 and (16 x 7) = 112 for a total of 247. So, the proposed project would provide housing for at most 247 people. However, it is not expected that three persons will occupy a one-bedroom unit. Nevertheless, for the purposes of this analysis, a population of 247 people is assumed. The population of the City of Oakland was 397,011 in 2010, so the additional 396 people would represent 0.0009% of that population. The City of Santa Rosa had a population of 26,801 as of the 2010 Census. The project represents 0.9% of the population.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No adverse impact is expected to result from the proposed project, as it would not create a significant change to the demographics of the area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Uniform Relocation Act (URA), passed by Congress in 1970, establishes minimum standards for federally-funded programs and projects that require the acquisition of real property (real estate) or displace persons from their homes, businesses, or farms. The Uniform Act’s protections and assistance apply to the acquisition, rehabilitation, or demolition of real property for federal or federally-funded projects.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Section 205 of the URA requires that, “Programs or projects undertaken by a federal agency or with federal financial assistance shall be planned in a manner that (1) recognizes, at an early stage in the planning of such programs or projects and before the commencement of any actions which will cause displacements, the problems associated with the displacement of individuals, families, businesses, and farm operations, and (2) provides for the...
The site was previously operated as a senior center and has not be in use for quite some time. The ArtStart children’s program has similarly been closed down for some time due to COVID-19 pandemic restrictions. Both uses of the site were operated by the City of Santa Rosa. The City of Santa Rosa currently owns the site and will own the site after the project is developed. Therefore no residents or businesses will be displaced by the project.

A conforming relocation plan is not required.

Source Documentation: (3) (7) (54)

COMMUNITY FACILITIES AND SERVICES

Educational and Cultural Facilities

<table>
<thead>
<tr>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Educational Facilities</td>
</tr>
</tbody>
</table>

The project by its definition is to provide affordable housing for an estimated population of 247 persons. It is anticipated that a number of school aged children will be housed by the project due to the target demographic of low-income and moderate income families. Based on Santa Rosa City Schools generation factor of 0.4 per unit, the project is anticipated to house an estimated 25 students, presumably spread over elementary, middle school and high school ages.

Public school facilities and services are supported through the assessment of development fees in addition to funds from the state and from local school districts. All new development in the project area would be required to pay impact fees to offset the impact of development on the school system. With the payment of impact fees, the additional 25 students in the educational system is not anticipated to create an adverse impact.

The Santa Rosa Unified School District (SRUSD) shows that residents of the site would attend: Brook Hill Elementary School, 1850 Vallejo Street; Herbert Slater Middle School, 3500 Sonoma Avenue; and Montgomery High School, 1250 Hahman Drive.

Students in the SRUSD are currently remote-learning due to COVID-19 pandemic lockdowns, as ordered in the State of California. It is unclear if or when in-class learning may resume, but it appears likely that remote-learning will be available for students who wish to learn remotely and/or whose parents agree this is the preferred method. Therefore, there are no
<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
</table>
| | | immediate impacts to school facilities while children are remote-learning; and there may be no long-term impacts at all from the additional students if remote-learning is incorporated into the school system when traditional in-class learning resumes. There are no adverse impacts to school facilities as a result of the project. **Cultural Facilities** The site is located approximately ¾ mile from downtown Santa Rosa with numerous theatres and landmarks. Historic Sonoma is located 17 miles east. The Sonoma County Public Library – Central Library is located at 211 E Street, one mile north of the site. The project location near transit affords other opportunities for cultural enrichment outside the immediate area. The project represents an incremental demand for cultural facilities; there are no adverse impacts identified. There is a small benefit in the project location near downtown Santa Rosa and high-quality transit. **Commercial Facilities** The site is located one block from Santa Rosa Avenue, which runs north to south across the City of Santa Rosa. Santa Rosa Avenue is a commercial corridor with a wide variety of services, restaurants, banks, auto services and parks. As stated above, downtown Santa Rosa is located less than a mile to the north. There are two small markets south of the site; a full-service grocery lies to the north, south, east and west of the site. The project location very near the center of the City (as identified as the intersection of Highway 101 and 12) affords many opportunities for shopping and services. For residents without a personal vehicle, public bus transit service conveniently runs along Santa Rosa Avenue and can be accessed one block west of the project. There is a small benefit in the project’s location near transit and commercial facilities. The project is not located in a food desert. **Health Care and Social Services** 2 **Health Care** The nearest hospital to the site with a full-service emergency room is Santa
Environmental Assessment Factor

<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosa Memorial Hospital</td>
<td></td>
<td>Located at 1165 Montgomery Drive in Santa Rosa, approximately 1.5 miles north and has a Level II Trauma Center and Emergency Department.</td>
</tr>
<tr>
<td>For Kaiser Permanente members, Kaiser Hospital Santa Rosa is located at 401 Bicentennial Way in Santa Rosa, approximately 4.2 miles north or an 8-12 minute drive. The facility houses full 24-hour emergency services, full hospital and non-emergency medical offices and specialty departments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sutter Santa Rosa Regional Hospital located at 30 Mark West Springs Road in Santa Rosa, approximately 6.5 miles north of the site or a 9-minute drive. Sutter Hospital has 24-hour full-service emergency room and has 84 acute care beds. Sutter has a heliport for airlifted patients.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other healthcare facilities in the vicinity include St. Joseph’s Health, Sutter Health and other small clinics and private practice offices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are no significant impacts to healthcare facilities or delivery systems anticipated as a result of the proposed project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The County of Sonoma provides social services to county residents by providing health care, financial assistance, food assistance and tailored programs for homeless persons and veterans. A variety of children and family services are provided, including child protective services, child care, youth services and other resources for children and families. Employment and community resources are also provided. The nearest service office to the product is located at 3600 Westwind Blvd. in Santa Rosa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The project does not represent a significant social services impact.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Documentation: (7) (8) (57) (58) (59) (60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Waste Disposal / Recycling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The City of Santa Rosa and Recology, Inc. dba Recology Sonoma Marin maintain an exclusive franchise agreement for the collection of solid waste, organic waste and recyclable materials in the city pursuant to Chapter 9-12 of the Santa Rosa City Code. The term of the agreement began on January 1, 2018 and ends on December 31, 2032, for a term of fifteen (15) years.</td>
<td></td>
</tr>
<tr>
<td>The site and vicinity are already served with solid waste disposal service. There would be a minor increase in solid waste generated by the project site, however this would not be significant enough to cause the new construction of landfill sites.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Assessment Factor</td>
<td>Impact Code</td>
<td>Impact Evaluation</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| **Waste Water / Sanitary Sewers** | 2 | The site is already served with sanitary sewer services as provided by the City of Santa Rosa. The City owns and operates a wastewater collection system that consists of approximately 590 miles of sanitary sewer lines, ranging in size from 6 to 66 inches in diameter, and includes 18 lift stations. Wastewater flow is generally routed from northeast to southwest and delivered to the Laguna Water Treatment Plant (WTP). All wastewater flow generated within the project area is collected and conveyed in a gravity sewer system and delivered to the Laguna WTP.

The Laguna WTP is a tertiary-level treatment facility that has an average daily dry weather flow of 15.5 mgd and is permitted for 21.34 mgd average daily dry weather flow. Projects under Santa Rosa’s Sub-regional Water Reuse System Incremental Recycled Water Program, which was originally undertaken in 2001, will be implemented as growth occurs, eventually increasing the plant’s capacity to 25.79 mgd, 18.25 mgd of which would be allocated to Santa Rosa.

The City’s existing wastewater collection system, including scheduled, planned, and anticipated Capital Improvement Projects (CIP) projects, services the existing and future development anticipated by the General Plan. These projects include on-going annual replacement of wastewater collection and trunk pipelines, improvements to wastewater lift stations, and maintenance and repair of the wastewater system throughout the City. Wastewater from Santa Rosa is treated at the Laguna Sub-regional Wastewater Treatment Plant (LTP) and is reclaimed in the Santa Rosa Sub-regional Water Reclamation System. The City Council-adopted CIP is scheduled to make various improvements to the LTP and reclamation system to maintain adequate capacity to treat and reclaim wastewater volumes anticipated by the General Plan. The current system rated capacity is 21.34 mgd. This is expected to be sufficient capacity into the future. Planning and environmental work has been completed that designates various projects to be implemented as growth occurs that would expand the system to 25.89 mgd, which will meet General Plan projections of Santa Rosa and the other sub-regional partners.

Over 500 miles of underground pipes bring wastewater to the treatment plant, where water goes through three stages of treatment prior to disinfection, storage, and reuse. The water is treated to the highest level recognized in state water recycling regulations (Title 22). |

Source Documentation: (7) (24) (61) (62)
<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>It is assumed that the proposed project will utilize existing sewer lines along Bennett Valley Road or Rutledge Avenue. The developer will be required to pay for any required laterals to serve the project. The site and vicinity are already served with waste water service. There would be a minor increase in waste water generated by the project site, however this would not be significant enough to cause the new construction of Water Treatment Plants, in of itself. Source Documentation: (7) (63)</td>
</tr>
</tbody>
</table>

Water Supply

<table>
<thead>
<tr>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Developments within the City of Santa Rosa utilize municipal water sources, which include the use of some groundwater. City will be able to support growth in combination with existing demands and planned future demands. The groundwater supply would be adequate to support the projected amount of groundwater anticipated to be pumped as a share of the potable water supply needed to support future growth within Santa Rosa. As a result, the project would not substantially deplete groundwater supplies or result in the need to pump more water than can be supported by the local groundwater basin. A combination of existing and additional sources comprises the City’s water supply to serve the future water supply needs as identified in the City’s General Plan 2035. The City’s most recent water demand analysis, conducted in 2015, indicated that the City has adequate supply in normal and multi-dry water years to meet demands through 2040. If a supply shortfall should occur during a single-dry year, Sonoma Water would allocate water in conformance with the Water Shortage Methodology outlined in the Restructured Agreement, and the City would enact the appropriate stage of the City’s 2015 Water Shortage Plan to reduce customer water demands accordingly. When the City prepares its 2020 Urban Water Management Plan (UWMP) the City will update current and projected demands as well as supply availability. The project is required to comply with the City’s Water Efficient Landscape Ordinance (WEO), to help reduce water usage for landscaping. There are no adverse impacts identified. Source Documentation: (7) (63) (64) (65)</td>
</tr>
<tr>
<td>Environmental Assessment Factor</td>
<td>Impact Code</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Public Safety - Police, Fire and Emergency Medical | 2 | **Police**

The Santa Rosa Police Department (SRPD) is the main provider of police services for the project area, but on the highways and within the unincorporated areas, the County Sheriff handles criminal law enforcement and the California Highway Patrol assists with traffic enforcement. Mutual aid between neighboring law enforcement agencies is provided on an as-needed basis.

The nearest police station to the site is located at 965 Sonoma Avenue, approximately 1.1 miles northeast of the site.

The General Plan calls for expedient police response to emergency calls. Phone calls to the Police Department are categorized by three levels of priority numbered as one, two and three. Priority one is for an incident in progress that threatens life or property, two being an incident with the potential to escalate to priority one, and three being incidents in the past or that otherwise do not require an immediate response. In 2018, the Police Department's average response time for priority one calls was 6 minutes and 26 seconds, of which there were 5,054 calls for service, the average response time for priority two calls was 11 minutes and 12 seconds, of which there were 32,605 calls for service, and the average response time for priority three calls was 26 minutes and 16 seconds, of which there were 23,032 calls for service.

In 2018, the Police Department had a total of 266.5 employees, 181 sworn officers and 85.5 civilian employees. The City continues its efforts in neighborhood oriented policing by assigning officers and sergeants to specific beats throughout the City including the downtown core, Roseland area and the Santa Rosa City School District. This strategy allows officers to become familiar with neighborhoods and communities while focusing other resources on the investigation and prosecution of violent crimes.

An adverse impact would result if the proposed project would cause the new construction of additional facilities or the hiring of sworn personnel to be hired. There would not be a need for any additional facilities. The proposed project will construct 62 apartments. The project would not contribute to a significant cumulative impact related the creation or expansion of physical police facilities since it would not result in the need for additional facilities other than those already planned.
Fire and Emergency Medical

Fire protection and emergency services for the project site are primarily the responsibility of the Santa Rosa Fire Department (SRFD). The SRFD serves the City of Santa Rosa as well as the Roseland Fire Protection District through a contractual agreement, for a total population served of approximately 175,625 within an area of approximately 43 square miles.

The Fire Department responded to 27,901 calls for service in 2018, a 2 percent increase from 2017, when there were 27,258 calls for service. Of the 27,901 calls for service, 18,116 (65 percent) of these calls were emergency medical incidents. The Department provides emergency services for fire, medical, hazardous material and urban rescue incidents. The Fire Department responded with 10 paramedic engine companies and 2 ladder truck companies out of the remaining 10 strategically located fire stations. Excluding the Tubbs Fire, in 2017, there were 509 fires with a fire loss of $6,199,807.

Growth of the City continues to have a cumulative impact on the ability of the Fire Department to deliver service. For example, traffic congestion continues to delay Fire Department response times. The General Plan’s fire emergency response time goal is that the Fire Department shall achieve 90 percent performance of arrival of the first fire company at an emergency within five minutes of notification by the dispatch center. The time goal does not include the additional 70 second standard for the dispatch center call taking and emergency medical dispatching. The Department’s emergency resources arrived on scene within 5 minutes of dispatch 73 percent of the time. The Fire Department was not able to meet the General Plan’s response time goal this year.

The citizens of Santa Rosa passed Measure O, a special tax for public safety and gang prevention, in 2004. The funding from this tax measure has been used towards the addition of three fire stations, one located in the southwest (opened 2006) and two in the northeast (2007, 2015), one of which was relocated from Parker Hill Road to Newgate Court in Fountaingrove. The new Station 5 at Newgate Court was destroyed in the Tubbs Fire, as discussed in the Public Services and Facilities section above. As of December 21, 2018, a temporary fire station has been placed into service at the former Fire Station 5 property at 3480 Parker Hill Road, with plans for construction of a new Fire Station 5 in the Fountaingrove area also underway. The revenue from Measure O also funds a full-time paramedic fire engine and the upgrade of two additional fire engines to the paramedic level. Due to the funding constraints, the development of the final new fire station near Kawana Springs and Petaluma Hill Roads called for in the General Plan has been delayed.
<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The nearest fire station to the project is Santa Rosa Fire Station 1, located at 955 Sonoma Avenue, 1.1 miles northeast of the site. As a new construction project that would create residential units, implementation of the project would place additional demand for fire and emergency services. However, this impact is considered less than significant, as it would not, in of itself, cause the need for additional facilities or personnel. Conclusion During Plan Check by the Santa Rosa Fire Department, specific suppression methods will be required to be incorporated, to meet code such as automatic sprinkler systems or other building systems that meet California Fire Code requirements to reduce loss of life and property in the event of a wildfire. There are no adverse effects identified. Source Documentation: (7) (24) (65) (66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parks, Open Space and Recreation</td>
<td>2</td>
<td>The Santa Rosa Recreation & Parks Department operates and maintains over 1,100 acres of City park lands, open space, civic space and roadside landscaping along with over 10,000 trees. City crews care-take 72 neighborhood and community parks and a large number of special recreational and historic facilities, including Howarth Memorial Park, Luther Burbank Home & Gardens, Church of One Tree, DeTurk Round Barn, Santa Rosa Rural Cemetery, Finley Community Center with the Person Senior Wing, Steele Lane Community Center, Ridgway Swim Center, Finley Aquatic Center and the Bennett Valley Golf Course. Community parks serve residents throughout the City but are generally within one mile of their users. The community parks often contain specialized recreational facilities, such as sports fields and tennis courts. The City currently meets its standard of 6 acres of parkland per 1,000 residents, of which 1.1 acres are dedicated for open space, 1.4 acres for school related activities and 3.5 acres for parks. Julliard Park is located 0.38 miles to the north, along Santa Rosa Avenue. The Prince Memorial Greenway is located just two blocks further north of Julliard Park. The Greenway runs roughly east-west and provides biking and walking trails.</td>
</tr>
<tr>
<td>Environmental Assessment Factor</td>
<td>Impact Code</td>
<td>Impact Evaluation</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>In addition to local parks, Sonoma County Regional Parks includes more than 50 parks and beaches with miles of trails, sports fields, playgrounds, campgrounds and an ocean marina. The City of Santa Rosa, Parks and Recreation department offers programs and activities for all ages. Adult programs include arts and crafts, dance, fitness, performing arts, sports classes and leagues. The Department offers programs for children and youth including sports, activities and classes, camps and special events. The project represents an incremental demand for parks and recreational facilities therefore no adverse impacts are identified. Source Documentation: (7) (8) (24) (67) (68)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transportation and Accessibility</th>
<th>2</th>
<th>Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Traffic Operational Memorandum was conducted for the project by Trames Solutions Inc. in December 2020. A summary follows and the report is attached in Appendix G.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study Area

The Project site is approximately one mile south of Downtown Santa Rosa in the South Park neighborhood. The site is located just south of State Route 12 (SR-12) and is located east of U.S. Highway 101 (US-101). East of the site, notable landmarks include the Santa Rosa Veterans Memorial Building, the Sonoma County Fairgrounds, and a park-and-ride lot beneath the SR-12 viaduct, all of which are near or at the Brookwood Avenue/Maple Avenue/Bennett Valley Road intersection. Low density residential uses surround the site’s eastern edges, while a mixture of commercial and light industrial characterize the area to the west. To the north, SR-12 and Bennett Valley Road establish a barrier and edge to north-south pedestrian travel between the Project, Downtown, and destinations to the north. Petaluma Hill Road and Santa Rosa Avenue provide primary access to commercial and residential uses to the south.
Rutledge Avenue runs along the Project’s west frontage and is a two-way, north-south local street with on-street parking and one travel lane in each direction. Sidewalks are provided on each side of the street. The prima facia speed limit is 25 mph.

Bennett Valley Road runs along the Project’s north frontage and is a one-way, two-lane arterial road that functions as a frontage road to SR-12 and is the eastbound one-way couplet pair to Maple Avenue between Santa Rosa Avenue and Gordon Lane. On-street parking, sidewalks, and Class II bicycle lanes are provided on the south side of the street. The posted speed limit is 35 mph.
<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ware Avenue runs along the Project’s south frontage and is a two-way, east-west local street with on-street parking and one travel lane in each direction. Sidewalks are provided on each side of the street. The prima facia speed limit is 25 mph.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Rosa Avenue is a major north-south four-lane arterial roadway that is approximately 150- feet to the west of the Project site. The corridor connects Downtown Santa Rosa with the southern city limits with continuation into unincorporated Sonoma County and northern Rohnert Park. The posted speed limit is 35 mph.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Route 12 is an east-west state highway that connects Santa Rosa to Sebastopol to the west and to Sonoma Valley in the east. Near the Project, SR-12 is a four-lane freeway, with crossings of the freeway provided at Santa Rosa Avenue, South E Street and Brookwood Avenue. The nearest interchange to the project site is the split diamond South E Street/Downtown Santa Rosa interchange.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Highway 101 is a north-south highway and is the principal regional freeway in Sonoma County. Near the Project, US-101 is a six-lane freeway with two high occupancy vehicle (HOV) lanes and includes a full interchange connection with SR-12. The nearest interchange to the project site is the Baker Avenue/Santa Rosa Avenue interchange.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing and Planned Bicycle Facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Project site is currently served by three primary bikeway corridors: Bennett Valley Road/Maple Avenue, Petaluma Hill Road, and Santa Rosa Avenue. Each includes Class II bicycle lanes and Class III bicycle route/shared vehicle lane facility types.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Bennett Valley Road/Maple Avenue corridor is an east-west corridor with Class II bicycle lanes and runs between Santa Rosa Avenue and the eastern edge of the City via Hoen Avenue. Between Brookwood Avenue and Santa Rosa Avenue, Maple Avenue functions as the westbound one-way couplet pair to Bennett Valley Road and includes Class II bicycle lanes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both Petaluma Hill Road and Santa Rosa Avenue are north-south corridors with continuous Class II bicycle lanes except for several multi-block gaps that require bicyclists to share motor vehicle lanes. The gap in the Santa Rosa Avenue bikeway is notable since it occurs between SR-12 and the Santa Rosa River where there are few parallel and direct low-volume alternative routes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environmental Assessment | Impact Code | Impact Evaluation
--- | --- | ---
The City of Santa Rosa’s *Bicycle & Pedestrian Master Plan* 2018 Update proposes several key bikeway changes near the Project site including upgrading existing Class II bicycle lanes to buffered bicycle lanes along Petaluma Hill Road between Barham Avenue and Yolanda Road; and, installing Class II bicycle lanes along Santa Rosa Avenue between Maple Avenue and the Santa Rosa River. The plan also included a high injury bicycle and pedestrian network analysis which identified Santa Rosa Avenue between Bennett Valley Road and Colgan Avenue as a high injury corridor for bicyclists.

Public Transit

The following descriptions of public transit service represent pre-COVID-19 conditions. Many routes have been temporarily suspended or are operating with reduced service due to lower travel demand resulting from social distancing mandates.

Santa Rosa CityBus provides local transit services in the study area, with 17 bus routes and paratransit operating in the City of Santa Rosa. The project site is served by Route 18 (East Circulator), which starts at the Downtown Transit Mall one mile north and makes a loop to the east of the project site, stopping at Montgomery Village, the Mayette Shopping Center, and Farmers Lane Plaza. Route 18 runs hourly, between 7:20 AM to 4:20 PM on weekdays and between 10:20 AM to 4:20 PM on weekends. The closest stop, which has a bus shelter and seating, is on the Project’s north frontage on Bennett Valley Road at Rutledge Avenue. Routes 3 and 5 also operate within one quarter-mile walk of the project site, and each provide half-hourly service on weekdays (hourly on weekends). Route 3 travels down Santa Rosa Avenue between the Downtown Transit Mall and the Santa Rosa Market Place. Route 5 connects the Downtown Transit Mall and the Santa Rosa Market Place by way of Petaluma Hill Road.

Sonoma County Transit operates eight local and nine intercity routes across Sonoma County, with 8 of the intercity routes connecting in the Downtown Transit Mall. Routes 42, 44, and 48 stop within one quarter-mile of the project site, on Santa Rosa Avenue at Maple Avenue. Route 42 provides commuter-oriented weekday service to the Industry West Business Park. Routes 44 and 48 are parallel routes that connect the Downtown Transit Mall to Rohnert Park and Petaluma.

Sonoma-Marin Area Rail Transit (SMART) provides regional passenger rail service between Sonoma County Airport and Larkspur. Trains operate on weekdays and weekends with 30-minute weekday peak-period headways. The
Downtown Santa Rosa SMART station is just over one mile northwest of the project site.

Operational Assessment

Trip Generation Estimate

Low-income households, particularly those in multifamily buildings, tend to own fewer vehicles and make fewer trips compared to higher-income households. Residents of affordable housing are likely to generate fewer trips compared to market rate multifamily housing. Because the Institute of Transportation Engineers (ITE) *Trip Generation Manual, 10th Edition*, does not include affordable housing as a distinct use, Fehr & Peers estimated trip generation using rates for midrise multi-family residential, which presents a conservative estimate of trip generation.

The table below presents weekday daily, AM peak hour, and PM peak hour trip generation estimates for the proposed project. While the Project site is currently developed with a community center facility, the use has been inactive for several years. Accordingly, a trip credit was not applied to the Project’s trip generation estimate.

Table 10 Vehicle Trip Generation Rates

<table>
<thead>
<tr>
<th>ITE Code</th>
<th>Land Use</th>
<th>Dwelling Units</th>
<th>Daily Vehicle Trips</th>
<th>AM Vehicle Trips</th>
<th>PM Vehicle Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>221</td>
<td>Mid-Rise Multi-Family Residential</td>
<td>62</td>
<td>336</td>
<td>168</td>
<td>168</td>
</tr>
</tbody>
</table>

Notes:
1. 100% of units will be affordable housing with 50% of those as supportive housing.
2. Based on fitted curve equation.

Sources: Fehr & Peers, 2020, and ITE *Trip Generation Manual, 10th Edition*

Travel surveys and empirical studies indicate that trip generation rates for affordable housing developments may be lower than ITE multi-family rates. A comparison of trip rates from affordable housing studies to the ITE rate for apartments (ITE Land Use Code 220) found that affordable housing sites generated, on average, similar vehicle trips per unit during the AM peak hour and 35 percent fewer vehicle trips per unit during the PM peak hour. In addition, the affordable housing studies found higher vehicle trip rates during the AM peak hour than the PM peak hour, perhaps reflective of differences in trip-making patterns, in addition to differences in vehicle trip rates.
Vehicle Miles Traveled (VMT)

The Project site is located within a low-VMT area as shown on a March 2020 residential VMT screening map provided by City staff and prepared by the Sonoma County Transportation Authority. Low-VMT areas are defined as geographic areas either within a transit priority area or locations with per-capita residential VMT 15% below the countywide average as estimated by the 2019 Sonoma County travel forecasting model. Accordingly, the Project’s impact on VMT is presumed to be less than significant.

Automobile Parking

The City of Santa Rosa’s Zoning Code requires off-street vehicle and bicycle parking for both affordable and market-rate multifamily housing projects. Additionally, State Density Bonus Law projects are pre-approved for an up to 50 percent reduction from the City’s parking standards if travel lane widths and on-street parking do not impair emergency vehicle access. Fifty-two off-street parking stalls are proposed with the Project which satisfies the 43-stall minimum required under the City’s State Density Bonus Law zoning standards.

The parking reduction is not anticipated to impede emergency vehicle access. Rutledge Avenue, the Project’s primary public street frontage, is 36-feet wide between the curbs, which includes two eight-foot wide on-street parking lanes and two ten-foot wide travel lanes. Combined, the travel lanes provide 20-feet horizontal clearance between parked vehicles which is adequate for two-way traffic or for a vehicle to pass a stopped vehicle. Furthermore, in the event all on-street parking stalls were occupied, multiple driveway approaches along the street will create gaps where moving vehicles could depart the travel lanes to allow emergency vehicles to pass.

Bicycle Parking

Fifty-six long-term and four short-term bicycle parking spaces are proposed with the Project which is greater than the respective minimums of 16 and three. However, bicycle parking locations and facility types are not yet shown on the site plan. For future submittals to the City, the Project Sponsor will identify long- and short-term bicycle parking locations and facility types that meet the City’s bicycle parking standards listed in Chapter 20-36.090 of the Santa Rosa City Code. Parking standards and the Project’s parking supply area summarized in the table below.

Table 11 Affordable Multifamily Housing Parking Standards
Multimodal Site Access and Circulation

Fehr & Peers reviewed the Project site plan to evaluate access and circulation for all modes. Areas of review included driveway sight lines, driveway locations, and pedestrian and bicycle access locations.

Two driveways are proposed on Rutledge Avenue, the minor street frontage, which aligns with access management best practices to minimize auto access along arterial roadways. Sufficient longitudinal separation appears to be provided between driveways and intersecting streets. The City nor Caltrans establish sight distance standards for urban driveways, but Project plans appear to show unobstructed sight lines between a driver stopped in the driveway departure lane and a pedestrian approaching the driveway on the sidewalk. Final site plans should be reviewed by City staff or qualified persons to ensure that sufficient longitudinal separation is provided between driveways and intersecting streets and to ensure that adequate sight lines are maintained.

Multiple pedestrian and bicycle access points are provided via dedicated pathways that directly connect building entrances to sidewalks. An accessible path of travel will be provided between the building entrance and the Santa Rosa City Bus stop on the Bennett Valley Road frontage. When siting bicycle parking, direct walkways with adequate clearances should be provided between parking facilities and public street frontages to provide bicyclists convenient access.

Conclusion

No adverse impacts to traffic as a result of the project were identified. The project is transit-oriented by design and there is a small benefit in this regard.

Environmental Assessment

<table>
<thead>
<tr>
<th>Environmental Assessment Factor</th>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parking Standard</th>
<th>Required Parking</th>
<th>Proposed Parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile Parking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studio / 1 Bedroom</td>
<td>1 space per unit</td>
<td></td>
</tr>
<tr>
<td>2 or more bedrooms</td>
<td>2 spaces per unit</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Bicycle Parking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-Term</td>
<td>Up to 15% of long-term</td>
<td>3</td>
</tr>
<tr>
<td>Long-Term</td>
<td>1 space per 4 units</td>
<td>16</td>
</tr>
</tbody>
</table>

Notes:
1. Includes a 50 percent reduction to the multifamily off-street parking standards that is considered pre-approved by the City provided emergency vehicle access is maintained (SRCC Chapter 20-31,090).

Source: Fehr & Peers, 2020, and Santa Rosa City Code, Title 20

Environmental Assessment

704 Bennett Valley Road, Santa Rosa, CA 95404

April 2021
Environmental Assessment Factor

<table>
<thead>
<tr>
<th>Impact Code</th>
<th>Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
<td>The project will meet HUD regulations, California Building Code (CBC) and Americans with Disabilities Act (ADA) regulations with a minimum of 10% required to be residential dwelling units with mobility features and a minimum of 4% required to be residential dwelling units with communication features for persons with audio/visual impairments. The site common areas, amenities, and parking will all be accessible and meet current CBC and ADA accessibility standards. Source Documentation: (50) (69) (Appendix G)</td>
</tr>
</tbody>
</table>

NATURAL FEATURES

<table>
<thead>
<tr>
<th>Unique Natural Features, Water Resources</th>
<th>2</th>
<th>There are no unique natural features on the site. There are no water resources on or near the site. The subject property is covered in impervious surfaces. Source Documentation: (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation, Wildlife</td>
<td>2</td>
<td>Please see Endangered Species Act section above for a complete discussion of biological resources and potential impacts. Mitigations Required: ES1. Source Documentation: (7)</td>
</tr>
<tr>
<td>Other Factors</td>
<td>1</td>
<td>The project will provide much needed affordable housing near transit. The proposed project is beneficial to both residents and the community. The project will have a positive effect in alleviating the housing crisis in the City of Santa Rosa after the Tubbs fire of 2017 destroyed over 5,000 homes. Source Documentation: (7) (70)</td>
</tr>
</tbody>
</table>
Additional Studies Performed:

See Source Documentation List

Field Inspection (Date and completed by):

December 15, 2020 Cinnamon Crake, President, Bay Desert, Inc. dba AEM Consulting, Report Preparer/Professional Knowledge

List of Sources, Agencies and Persons Consulted [40 CFR 1508.9(b)]:

See Source Documentation List

List of Permits Obtained:

No permits have been obtained yet. The moment the use of Federal funds was contemplated, all project actions were halted to conduct this environmental review.

Public Outreach [24 CFR 50.23 & 58.43]:

The project results in a Finding of No Significant Impact (FONSI) which will be published in the newspaper and circulated to public agencies, interested parties, and landowners/occupants of parcels located within the project’s Area of Potential Effects (APE). Information about where the public may find the Environmental Review Record pertinent the project will be included in the FONSI Notice.

Cumulative Impact Analysis [24 CFR 58.32]:

No adverse cumulative impacts have been identified.

Alternatives [24 CFR 58.40(e); 40 CFR 1508.9]

The project site presents a unique opportunity to convert an underutilized site into much needed affordable housing. An increase of 62 affordable apartments will be achieved by the project. The purpose of the proposal is to increase the number of affordable housing units in the City of Santa Rosa and Sonoma County as a whole.

No Action Alternative [24 CFR 58.40(e)]:

The site could be acquired or developed as affordable housing, market-rate housing or commercial uses. The existing improvements may be demolished and redeveloped as other land uses. The project site may continue in its current state. The impacts discussed in this Environmental Assessment would not occur.

Summary of Findings and Conclusions:

The project is suitable from an environmental standpoint. As long as the mitigation measures are adhered to, there is no anticipated significant impact from the project. The project is a benefit to the community and will provide affordable housing. The project will provide a safe, sanitary, and affordable place for residents.
Mitigation Measures and Conditions [40 CFR 1505.2(c)]

Summarize below all mitigation measures adopted by the Responsible Entity to reduce, avoid, or eliminate adverse environmental impacts and to avoid non-compliance or non-conformance with the above-listed authorities and factors. These measures/conditions must be incorporated into project contracts, development agreements, and other relevant documents. The staff responsible for implementing and monitoring mitigation measures should be clearly identified in the mitigation plan.

<table>
<thead>
<tr>
<th>Law, Authority, or Factor</th>
<th>Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>AQ1. Include measures to control dust and exhaust during construction</td>
</tr>
<tr>
<td></td>
<td>During any construction period ground disturbance, the applicant shall ensure that the project contractor implement measures to control dust and equipment exhaust. Implementation of the measures recommended by BAAQMD and listed below would reduce the air quality impacts associated with grading and new construction to a less-than-significant level. The contractor shall implement the following best management practices that are required of all projects:</td>
</tr>
<tr>
<td></td>
<td>a. All exposed, unstabilized surfaces that generate fugitive dust emissions (e.g., unpaved parking areas, material staging areas, soil piles, unstabilized graded areas, and unpaved access roads) shall be watered two times per day.</td>
</tr>
<tr>
<td></td>
<td>b. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.</td>
</tr>
<tr>
<td></td>
<td>c. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.</td>
</tr>
<tr>
<td></td>
<td>d. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).</td>
</tr>
<tr>
<td></td>
<td>e. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.</td>
</tr>
<tr>
<td></td>
<td>f. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.</td>
</tr>
</tbody>
</table>
| Contamination & Hazardous Substances | HZ1. The project applicant shall comply with all applicable laws and regulations regarding demolition and renovation of Asbestos Containing Materials (ACM), including but not limited to California Code of Regulations, Title 8; California Business and Professions Code, Division 3; California Health and Safety Code sections 25915-25919.7; and Bay Area Air Quality Management District, Regulation 11, Rule 2, as may be amended. Evidence of compliance shall be submitted to the City of Santa Rosa upon request.
HZ2. The applicant shall retain a qualified lead based paint contractor. The contractor shall prepare lead safe work practice guidance to be distributed to all workers or be supervised by a certified abatement supervisor. Caution shall be taken during demolition activities to prevent lead levels in generated airborne dust from painted surfaces (roof window caulking and paint) from exceeding the Permissible Exposure Limit (PEL) as required by California/OSHA, Title 8, CCR Construction Safety Orders for Lead, Section 1532.1. The contractor shall submit a report that all lead was handled as hazardous waste and disposed of at a proper hazardous waste facility. In addition, standard lead abatement treatment should be performed on all surfaces presumed to contain lead hazards. A licensed lead inspector, risk assessor or lead paint sampling technician shall perform a clearance evaluation to ensure that all lead based paint has been removed. If the report indicates that further cleaning is required, the contractor shall reclean and reassess the areas until the clearance report indicates a clean site. |
| Endangered Species | ES1. The following mitigation measures should be followed in order to avoid or minimize impacts to passerines and raptors that may potentially nest in the trees: |
a. Grading or removal of nesting trees should be conducted outside the nesting season, which occurs between approximately February 1 and August 31.

b. If grading between August 31 and February 1 is infeasible and groundbreaking must occur within the nesting season, a pre-construction nesting bird (both passerine and raptor) survey of the grasslands and adjacent trees shall be performed by a qualified biologist within 3 days of ground-breaking. If no nesting birds are observed no further action is required and grading shall occur within three days of the survey to prevent “take” of individual birds that could begin nesting after the survey.

c. If active bird nests (either passerine and/or raptor) are observed during the pre-construction survey, a disturbance-free buffer zone shall be established around the nest tree(s) until the young have fledged, as determined by a qualified biologist.

d. The radius of the required buffer zone can vary depending on the species, (i.e., 75-100 feet for passerines and 200-300 feet for raptors), with the dimensions of any required buffer zones to be determined by a qualified biologist in consultation with CDFW.

e. To delineate the buffer zone around a nesting tree, orange construction fencing shall be placed at the specified radius from the base of the tree within which no machinery or workers shall intrude.

f. After the fencing is in place there will be no restrictions on grading or construction activities outside the prescribed buffer zones. Once nesting is complete, the fencing may be removed and construction in that area may begin.

Geotechnical

G1. The recommendations presented in the Geotechnical report and Supplemental Exploration prepared by ENGEO and dated October 13, 2020 and January 20, 2021, respectively, shall be incorporated into the project plans and specifications and implemented during construction.

Historic Preservation

CR1. Archaeological and Paleontological Resources - Discovery During Construction

Pursuant to CEQA Guidelines section 15064.5(f), in the event that any historic or prehistoric subsurface cultural resources are discovered during
ground disturbing activities, all work within 50 feet of the resources shall be halted and the project applicant shall notify the City and consult with a qualified archaeologist or paleontologist, as applicable, to assess the significance of the find. In the case of discovery of paleontological resources, the assessment shall be done in accordance with the Society of Vertebrate Paleontology standards. If any find is determined to be significant, appropriate avoidance measures recommended by the consultant and approved by the City must be followed unless avoidance is determined unnecessary or infeasible by the City. Feasibility of avoidance shall be determined with consideration of factors such as the nature of the find, project design, costs, and other considerations. If avoidance is unnecessary or infeasible, other appropriate measures (e.g., data recovery, excavation) shall be instituted. Work may proceed on other parts of the project site while measures for the cultural resources are implemented.

In the event of data recovery of archaeological resources, the project applicant shall submit an Archaeological Research Design and Treatment Plan (ARDTP) prepared by a qualified archaeologist for review and approval by the City. The ARDTP is required to identify how the proposed data recovery program would preserve the significant information the archaeological resource is expected to contain. The ARDTP shall identify the scientific/historic research questions applicable to the expected resource, the data classes the resource is expected to possess, and how the expected data classes would address the applicable research questions. The ARDTP shall include the analysis and specify the curation and storage methods. Data recovery, in general, shall be limited to the portions of the archaeological resource that could be impacted by the proposed project. Destructive data recovery methods shall not be applied to portions of the archaeological resources if nondestructive methods are practicable. Because the intent of the ARDTP is to save as much of the archaeological resource as possible, including moving the resource, if feasible, preparation and implementation of the ARDTP would reduce the potential adverse impact to less than significant. The project applicant shall implement the ARDTP at his/her expense.

In the event of excavation of paleontological resources, the project applicant shall submit an excavation plan prepared by a qualified paleontologist to the City for review and approval. All significant cultural materials recovered shall be subject to scientific analysis, professional museum curation, and/or a report prepared by a qualified paleontologist, as appropriate, according to current professional standards and at the expense of the project applicant.
CR2. **Human Remains – Discovery During Construction**

Pursuant to CEQA Guidelines section 15064.5(e)(l), in the event that human skeletal remains are uncovered at the project site during construction activities, all work shall immediately halt and the project applicant shall notify the City and the Alameda County Coroner. If the County Coroner determines that an investigation of the cause of death is required or that the remains are Native American, all work shall cease within 50 feet of the remains until appropriate arrangements are made. In the event that the remains are Native American, the City shall contact the California Native American Heritage Commission (NAHC), pursuant to subdivision (c) of section 7050.5 of the California Health and Safety Code. If the agencies determine that avoidance is not feasible, then an alternative plan shall be prepared with specific steps and timeframe required to resume construction activities. Monitoring, data recovery, determination of significance, and avoidance measures (if applicable) shall be completed expeditiously and at the expense of the project applicant.

Noise

N1. To maintain a habitable interior environment, all 1st-4th floor units, as shown in the figure below, to be mechanically ventilated so that windows and doors can be kept closed at the occupant’s discretion to control noise intrusion indoors.
Determination:

- **Finding of No Significant Impact** [24 CFR 58.40(g)(1); 40 CFR 1508.27]
 The project will not result in a significant impact on the quality of the human environment.

- **Finding of Significant Impact** [24 CFR 58.40(g)(2); 40 CFR 1508.27]
 The project may significantly affect the quality of the human environment.

Preparer Signature: ___________________________ Date: April 1, 2021

Name/Title/Organization: Cinnamon Crake, President
Bay Desert, Inc. dba AEM Consulting

Certifying Officer Signature: ___________________________ Date: __________

Name/Title: Clare Hartman, Deputy Director, Planning and Economic Development
City of Santa Rosa

This original, signed document and related supporting material must be retained on file by the Responsible Entity in an Environmental Review Record (ERR) for the activity/project (ref: 24 CFR Part 58.38) and in accordance with recordkeeping requirements for the HUD program(s).
1. HKIT Architects. *Bennett Valley Road Affordable Housing, 702 Bennett Valley Road, Santa Rosa, CA 95404 - Resubmittal Plan Set*. Oakland, CA: s.n., February 12, 2021.

2. Association of Bay Area Governments (ABAG), Metropolitan Transportation Commission (MTC), Bay Area Air Quality Management District (BAAQMD), and Bay Conservation and Development Commission (BCDC). *Final Plan Bay Area 2040*. Adopted July 26, 2017.

17. **NorBay Consulting.** *Pre-Demolition Asbestos and Lead Inspection, Senior Center Building located at 704 Bennett Valley Road, Santa Rosa, California.* San Rafael, CA: s.n., December 24, 2020.

18. —. *Pre-Demolition Asbestos and Lead Inspection, Art Start Building located at 716 Bennett Valley Road, Santa Rosa, California.* San Rafael, CA: s.n., December 23, 2020.

19. **United States Department of the Interior.** *List of threatened and endangered species that may occur in proposed project location or may be affected by your proposed project, Bennett Valley Road Affordable Housing.* Sacramento, CA: Fish and Wildlife Service, January 29, 2021. Consultation Code: 08ESMF00-2021-SLI-0884.

27. **Much, Bryan.** *Expedited Record search results for the proposed 704 Bennett Valley Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404 (APNs 009-333-014-000, -009-000, 038-151-004-000, -011-000).** Rohnert Park, CA: Northwest Information Center, California Historic Resources Information System, November 24, 2020. NWIC File No.: 20-0914.

31. Rathbun, Nicole. Letters to tribes in re: 704 Bennett Valley Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404 – U.S. HUD Funds (Community Development Block Grants and/or PBVs). s.l. : City of Santa Rosa, December 9, 2020.

32. —. Letter to Julianne Polanco, State Historic Preservation Officer in re: Request for Section 106 Review: Bennett Valley Road Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404, HUD. s.l. : City of Santa Rosa, February 10, 2021.

34. Crake, Cinnamon. Memorandum to File in re: Section 106 Review Process for Bennett Valley Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404. s.l. : AEM Consulting, April 1, 2021.

42. —. Santa Rosa General Plan 2035 Environmental Impact Report. March 2009.

43. Murray, Susie. Bennett Valley Road Affordable Housing, 60-day Eligibility Letter (Required Plan Revisions). s.l. : City of Santa Rosa, Planning & Economic Development, January 11, 2021.

45. ENGENO Incorporated. Geotechnical Exploration, 702 Bennett Valley Road, Santa Rosa, California. San Jose, CA : s.n., October 13, 2020. PROJECT NO. 17389.000.000.

46. —. Supplemental Exploration and Liquefaction Analysis, 702 Bennett Valley Road, Santa Rosa, California. San Jose, CA : s.n., January 20, 2021. Project No. 17389.000.000.

49. City of Santa Rosa. *Clarification of Storm Water Related Site Design Requirements: Integrating the requirements of the California Green Building Standards Code (CALGreen), the City NPDES Municipal Storm Water Permit, and the State Construction General Permit.* November 1, 2011.

64. —. *Urban Water Management Plan.* 2015.

Appendix A — Project Description

- HKIT Architects. *Bennett Valley Road Affordable Housing, 704 Bennett Valley Road, Santa Rosa, CA 95404 - Resubmittal Plan Set*. Oakland, CA: s.n., February 12, 2021.
Appendix B – Airport Clear Zones

Bennett Valley Road Affordable Housing
702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue
Santa Rosa, CA 95404

Airports within 15 miles of the subject site:

<table>
<thead>
<tr>
<th>Airport type</th>
<th>Name</th>
<th>Distance from subject (Miles)</th>
<th>Airport Clear Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Airport</td>
<td>None</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Minor Airport</td>
<td>Sonoma County Airport</td>
<td>7.8 miles to the northwest</td>
<td>No</td>
</tr>
<tr>
<td>Minor Airport</td>
<td>Petaluma Municipal Airport</td>
<td>13.47 miles to the south</td>
<td>No</td>
</tr>
</tbody>
</table>
Figure 16 Sonoma County Airport Safety Compatibility Zones
Figure 17 Petaluma Airport Safety Compatibility Zones
Appendix C – Floodplains, Wetlands and Endangered Species

- **United States Department of the Interior.** *List of threatened and endangered species that may occur in proposed project location or may be affected by your proposed project, Bennett Valley Road Affordable Housing.* Sacramento, CA: Fish and Wildlife Service, January 29, 2021. Consultation Code: 08ESMF00-2021-SLI-0884.

- **California Department of Fish and Game.** *Santa Rosa Plain Conservation Strategy Study Area, Enclosure 1.* February 5, 2008. Excerpt.

- **United States Fish and Wildlife Service.** *National Wetlands Inventory, Bennett Valley Road Affordable Housing.* January 19, 2021.
Appendix D – Air Quality

Appendix E – Contamination and Toxic Substances

- Path Forward Environmental Engineering & Geology. *Phase I Environmental Site Assessment, 702 and 716 Bennett Valley Road and 921 and 927 Rutledge Avenue, Santa Rosa, California.* Oakland, CA : s.n., August 12, 2020. Project No.: 113-101-100.

- NorBay Consulting. *Pre-Demolition Asbestos and Lead Inspection, Senior Center Building located at 704 Bennett Valley Road, Santa Rosa, California.* San Rafael, CA : s.n., December 24, 2020.

- NorBay Consulting. *Pre-Demolition Asbestos and Lead Inspection, Art Start Building located at 716 Bennett Valley Road, Santa Rosa, California.* San Rafael, CA : s.n., December 23, 2020.
Appendix F – Historic Preservation

- **Crake, Cinnamon.** Memorandum to File in re: Section 106 Review Process for Bennett Valley Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404. s.l.: AEM Consulting, April 1, 2021.

- **Rathbun, Nicole.** Letter to Julianne Polanco, State Historic Preservation Officer in re: Request for Section 106 Review: Bennett Valley Road Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404, HUD. s.l.: City of Santa Rosa, February 10, 2021.

- **Tim Kelley Consulting, LLC.** Section 106 Review, 702 Bennett Valley Road, Santa Rosa, California. San Francisco, CA: s.n., February 2021.

- **Much, Bryan.** Expedited Record search results for the proposed 704 Bennett Valley Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404 (APNs 009-333-014-000, -009-000, 038-151-004-000, -011-000). Rohnert Park, CA: Northwest Information Center, California Historic Resources Information System, November 24, 2020. NWIC File No.: 20-0914.

- **Crake, Cinnamon.** Local Tribal Consultation List Request - 704 Bennett Valley Affordable Housing. West Sacramento, CA: Native American Heritage Commission, November 9, 2020.

- **Rathbun, Nicole.** Letters to tribes in re: 704 Bennett Valley Affordable Housing, 702 & 716 Bennett Valley Road and 921 & 927 Rutledge Avenue, Santa Rosa, Sonoma County, California 95404 – U.S. HUD Funds (Community Development Block Grants and/or PBVs). s.l.: City of Santa Rosa, December 9, 2020.
Appendix G – Noise and Traffic

Appendix H – Soils and Miscellaneous

- **United States Environmental Protection Agency.** *EJSCREEN Report, Bennett Valley Road Affordable Housing.* January 26, 2021.

- **ENGEIO Incorporated.** *Geotechnical Exploration, 702 Bennett Valley Road, Santa Rosa, California.* San Jose, CA : s.n., October 13, 2020. PROJECT NO. 17389.000.000.

- **ENGEIO Incorporated.** *Supplemental Exploration and Liquefaction Analysis, 702 Bennett Valley Road, Santa Rosa, California.* San Jose, CA : s.n., January 20, 2021. Project No. 17389.000.000.